

6th to 10th December 2021

Session 12: IMEPTUS presentations 9th December 2021

Nesrine Kaaniche and Joaquin Garcia Alfaro Télécom SudParis, Institut Polytechnique de Paris, France

PRIVACY-PRESERVING CHALLENGES FOR URBAN SAFETY

General Context: What do they know about us?

General Context: Who control our data in urban spaces?

General context: How to deal with?

• Privacy is not only being anonymous. It is beyond that!

Privacy is **not** for criminals only! But, It is **Hard** to achieve!

Privacy Enhancing Technologies (PET) can Help!

Needed

Not «generally usable» yet

Agenda

- General context
- Use case scenario
- PET categorization
- Discussion
- Conclusion

Use case scenario

Web search queries/recommandations May be relevant/sometimes NOT!

Use case scenario

PETs: A novel Taxonomy

PET groups	Categories	Approaches	Trust Model	Architectural Model	Drawbacks	Adapted to Personalized Services	Use-Cases
User Side	anti tracking	application level network level	semi-trusted untrusted trusted	client-server distributed (TOR) client-server (VPN)	non-personalized services traffic overhead (TOR) activity identification by provider (VPN)	×	web services
	privacy preserving certification	anonymous credentials group based signature attribute based signature	semi-trusted	client-server	computational overhead infrastructure requirements	1	e-health applications e-voting smart-cities applications e-banking
	obfuscation	data perturbation	untrusted	distributed	traffic overhead privacy-utility trade-offs	4	pervasive applications recommendation services
	privacy preserving computation	SMC	untrusted	distributed	several users must collaborate all participants need to be present collusion attacks	1	pervasive applications web search smart-cities applications
Server Side	Statistical Disclosure Cont r ol	anonymization Differential Privacy	semi-trusted	client-server	privacy-utility trade-offs	1	vehicular applications well-being applications geo-social applications intelligent transport
	self-destructing data systems		semi-trusted	distributed	Sybil attacks	×	web search
	obfuscation	PIR	semi-trusted	client-server	non-personalized services computational overhead	×	web search
	privacy preserving computation	homomorphic encryption	semi-trusted	client-server, distributed	computational overhead	4	recommendation services pervasive applications
Channel Side	secure communications	C-S communications end-to-end	trusted untrusted	client-server distributed	key management (e.g. PKI)	√ ×	web search messaging applications
	TTP	high anonymous proxy anonymous proxy	trusted	TTP	users must trust an external entity collusion attacks infrastructure requirements	1	web search recommendation services pervasive applications

Example of user side techniques: anti-tracking

Main goal of anti-tracking tools:

Prevent the server provider to trace Alice Interactions (using cookies or fingerprintings)

Example of user side techniques: anti-tracking

Main goal of anti-tracking tools:

Prevent the server provider to trace Alice Interactions (using cookies or fingerprintings)

Example of server side techniques: Statistical Data Disclosure

Main goal of database anonymisation (Statistical Disclosure):

Enable companies/enterprises to use/process anonymised data (indenpendently from GDPR requirements)

Original dataset

S. 1	Age	Disease
1	22	lung cancer
2	22	lung cancer
3	22	lung cancer
4	45	stomach cancer
5	63	diabetes
6	40	aids
7	35	aids
8	35	flu
9	32	diabetes

Generalized dataset

34 - 3	Age	Age*	
1	22	2*	
2	22 /	2*	١
3	22	2*	
4	45	≥ 40	
5	63	\geq 40	
6	40	\geq 40	
7	35	3*	1
8	35	3*	/
9	32	3*	

3-anonymity dataset

S. 8	Age*	Disease
1	2*	lung cancer
2/	2*	lung cancer
3	2*	lung cancer
4	\geq 40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
X	3*	aids
8	3*	aids
9	3*	diabetes

Example of server side techniques: Statistical Data Disclosure

Main goal of database anonymisation (Statistical Disclosure):

Enable companies/enterprises to use/process anonymised data (indenpendently from GDPR requirements)

Drawbacks:

- Complexity (Privacy-utility trade-offs)
- o Inference Attacks
- Full Trust on the remote server (server provider)

Discussion: technical challenges to implement PET in urban spaces

• Privacy preserving auditing tools

- Transparency and auditing concerns have been addressed by a minority of works → Need to address these requirements which have been emphasized by recent regulations.
- <u>Examples of recent works</u>: Intel-SGX provenance systems, informed consent for e-health applications, transactional privacy in blockchain-based systems

Privacy preserving data collection techniques

- Massive collection of sensitive data, by AI-based systems, in emerging pervasive applications → Need for privacy preserving data collection processes,
- <u>Recent works:</u> privacy-enhancing cryptographic methods (i.e., homomorphic encryption on encrypted users' data) to meet an agreement between privacy, efficiency and quality of experience.
- Privacy sensitive processing for ubiquitous environments
 - Need for lightweight security/privacy solutions adapted to resource-constrained devices (mobile devices).
 - *Examples of recent solutions:* Intel-SGX based solutions for pervasive/ubiquitous applications.

Discussion: legal, social and econmic challenges to implement PET in urban spaces

Legal challenges

- o Several regulations and laws regarding data protection
- <u>Research works:</u> translations laws/texts into efficient technical solutions, namely for users' consent collection and data transfers between several service providers

Social and economic challenges

- User-experience is the main pillar to define the perimeter of private information and the utility over the adoptions of PETs
- Several mediated cases: Kodak cameras, Google glasses, LG-TV..
- Trade-off between protection strategies and economic activities
- o <u>Recent works</u>: user empowerment approaches, the impact of data collection abuse practices on consumers' attitudes...

Conclusion

- It is important to emphasize that due to the diversity of smart applications, different privacy technologies need to be combined to ensure an acceptable level of privacy.
 - Smart cities combine so many technological components that it is not enough to simply apply privacy technologies to each component.
 - The interactions between technologies and data have to be considered to design *"joint privacy technologies."*
- Several solutions can be deployed at different levels, the main challenge consist on the resolving the hard equation between privacy, utility and fairness emphasized by the usage of AI algorithms in urban spaces.

Any questions?

