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Abstract 

Recently, flood damage in urban cities have been aggravated due to the increase of abnormal rainfall 

from climate change and localized heavy rains along with the urbanization from economic development. 

Therefore, there needs to be a comprehensive urban planning and preventive strategies. To reduce the 

flood damage in urban cities, there should be spatial structure designs and land use planning to evaluate 

the flood risk. However, as flood damage is affected be various factors, it is difficult to develop a 

predictive model. Therefore the purpose of this study is to develop a flood prediction function using 

machine learning and establish a flood risk map. 

This study used the 2014 Busan Metropolitan Flood Information Data, and analyzed after dividing the 

grid on a 30m×30m scale. The actual analysis used four machine learning techniques such as Decision 

Tree, Random Forest, Naïve Bayes and Support Vector Machines using R-programming to develop the 

flood prediction model, and the study developed the flood risk map using the Jenks Natural Breaks 

Classification of ArcMap and categorizing and visualizing the risks into five levels. 

After comparing the four models, it was shown that the Random Forest model was the most appropriate 

model for flood predictions. Therefore the weight of the variables was deduced by the importance of the 

contribution to the model, and the values from the results were used to develop the flood risk map. The 

results showed that the districts with the highest risks were Jeonggwan-eup, Gijang-gun, Geumjeong-

gu, Dongnae-gu, and Yeonje-gu, and it was shown that the application level of the flood risk map is high 

as the results showed overall similar results when comparing with the actual areas with flood damage. 

The results of this study will lead to avoiding inappropriate developments in areas with flood risks and 

inducing developments for areas with low risks, and will be applied as important data for guidelines on 

flood risk evaluations in the future. 
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Introduction 

The degree of natural disaster is increasing globally due to the intensified climate changes. In Korea, 

storm and flood damage from typhoons and heavy rain consist most of the natural disasters. In addition, 

due to the topographical trait where more than 70% of the country is mountainous, there is an increase 

of runoff in the urban areas in case of localized heavy rains, leading to great damage (Lee et al., 2016). 

There are various causes and types of urban disasters, and as population is focused on urban areas and 

residential and industrial facilities are highly developed, in case of a disaster, the damage is largely 

expanded, leading to not only property damage but also loss of lives, and also a total paralysis in the 

urban functions (Korea Research Institute for Human Settlements, 2008; Song, 2012). The ‘flood 

damage in urban cities’ in the urban areas can be defined as the damage in lives, physical body and 

property due to the external floods which occurs in case of floods, and internal floods which occurs 

when the sewage and other drainage systems cannot release storm water (Korea Research Institute for 

Human Settlements, 2008). Recently, flood damage in urban cities have been aggravated due to the 

increase of abnormal rainfall from climate change and localized heavy rains along with the urbanization 

from economic development which is more focused in terms of time and place compared to the past 

(Park et al., 2007; Son et al., 2010; Ministry of Land, Infrastructure and Transport, 2015). In addition, 

as the high density development of the built-up areas, the increase of impermeable areas due to urban 

development and artificially created areas such as underground space increase the flood damages, the 

flood damage in urban cities can be considered man-made. 

Therefore, the increase of urban flood damage due to climate change and urbanization requires a 

comprehensive urban planning and preventive strategies. Currently, Korea does not have detailed 

policies for maintenance of areas prone to floods. Although there was basis for redevelopment or 

reconstruction along with building regulations and incentives by regulating the ‘Disaster Management 

Areas’ in the Building Act, as part of the rationalization of regulation in December 2005, the ‘Disaster 

Management Areas’ from the Building Act disappeared and became unified with ‘Disaster Prevention 

Zones’ by the National Land Planning Act. However, as there is still no detailed ordinance on the 

‘Disaster Prevention Zones’, there are problems in starting the maintenance projects (Shin, 2006).  

To reduce flood damage in urban cities, there should be spatial structure designs and land use planning 

to evaluate the flood risk. However, as flood damage is affected be various factors, it is difficult to 

develop a predictive model. These problems can be solved by using Big Data. Therefore the purpose of 

this study is to develop a flood prediction function using machine learning and establish a flood risk 

map. 

 

Theory and Method  

Since the mid-2000s, urban flood was focused as a serious urban problem, and there were numerous 
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studies to develop detailed techniques to analyze floods by the urban characteristics in Korea following 

the development of meteorological technology, spatial information technology and hydrological 

technology. Although the studies collected various data and secured technology, there are still problems 

from the topographical interpretations centered on lowland floods, and difficulties in data collection and 

modification due to excessive mediating variables (Lee et al., 2016).  

Prior studies on the vulnerability and risks of urban floods nationally and internationally normally used 

statistical approaches or the GIS method. However, there are studies in recent days that apply machine 

learning techniques, which showed higher prediction levels than the linear regression models, in the 

field of disaster prevention (Sakr et al., 2010; Asim et al., 2017; Choi et al., 2018). 

Studies on urban floods using machine learning has not been considered in Korea. However, there were 

studies that used the Decision Tree and applied the vulnerability index based on spatial information for 

all of Korea to set and analyze the preventive measures for extreme floods with the results and analysis 

of the vulnerability by sub basin areas (Jang et al., 2009), used the Random Forest model and the Boosted 

Tree model to analyze the vulnerability of floods and avalanches in Seoul (Lee, 2017) and used the 

Random Forest model and the Support Vector Machine model to develop predictive functions of heavy 

rain damage of the metropolitan areas (Choi et al., 2018). 

 

1) Scopes of the Study 

This study analyzed the flood prediction function by using the 2014 Busan Metropolitan Flood 

Information Data. The spatial range of the study was on 881,350 grids with a 30m×30m scale of the 

entire Busan Metropolitan area for analysis, and the rater data included in the grid were deduced by the 

means. The temporal scope was set at 2014, when there was a great damage due to the localized heavy 

rains. The actual analysis used four machine learning techniques such as Decision Tree, Random Forest, 

Naïve Bayes and Support Vector Machines using R-programming to develop the flood prediction model, 

and the study developed the flood risk map using the Jenks Natural Breaks Classification of ArcMap 

and categorizing and visualizing the risks into five levels. 

 

2) Variables 

The variables used in this study are shown from <Table 1>. Based on the information on the floods of 

Busan Metropolitan, the indexes such as traces of floods, number of days with heavy rain of at least 

80mm/day, maximum rainfall in an hour, altitude, slope, distance from rivers, impermeability, and 

disaster prevention facilities were divided into disaster experience, climate factors, 

geographical/topographical factors, development factors and facility factors. The indexes were 

processed into the geographical spatial information for the analysis.  

The climate factors that are expected to directly affect floods were identified as the number of days 

with heavy rain of at least 80mm/day and the maximum rainfall in an hour that can reflect the extreme 
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weather, and the geographical/topographical factors that are expected to affect the flow of water and 

the decision of joining points were identified as the altitude, slope and distance from rivers. In 

addition, the impermeability was identified to show the development level of the urban areas to 

consider the surface runoff and drainage abilities of the soil, and disaster prevention facilities were 

identified as the facility factors. 

Table 1. Variables used for Analysis 

Index Types 

Disaster Experience Traces of Floods Discrete 

Climate Factors 

Number of days with heavy rain of 

at least 80mm/day 
Continuous 

Maximum rainfall in an hour Continuous 

Geographical/ 

Topographical Factors 

Altitude Continuous 

Slope Continuous 

Distance from rivers Continuous 

Development Factors Impermeability Discrete 

Facility Factors Disaster Prevention Facilities Discrete 

 

3) Analysis 

Data Preprocessing 

As machine learning techniques need to classify the data for the model training and verification of the 

data, after dividing in 7:3, there were 616,945 areas of training datasets and 264,405 areas of test datasets. 

The sample() function that randomly extracts data was used in this process, and replace=FALSE was set 

to avoid repetition of the same area.  

This study developed the flood prediction function with the training dataset (70% of the total data) and 

applied the developed function to the test dataset to compare the predicted values and the actual values 

to evaluate the predictive abilities. 

 

Decision Tree Model 

The Decision Tree classifies the decision making rules of a particular item in a structure of a tree, and 

has the advantage of being more objective and easy to interpret than the other methods (Breiman et al., 

1984). Therefore, it can provide the classification standards of each influence variables used as 

independent variables for flood prediction, and can calculate the weights of each influence variables. 

This study used the ctree() function in the party package of R-programming. The ctree() function uses 

the unbiased recursive partitioning based on permutation test and selects the variables to be cut based 

on the significance of the p-test, therefore there are no risks of over-fitting or to be biased and no need 

for puming. In addition, it applies the processes that consider the problem of multiple testing from 

repeatedly dividing the notes in the Decision Tree to stop dividing the nodes at an appropriate point in 

time. 
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Random Forest Model 

The Random Forest model assigns the maximum randomness to solve the problem of over-fitting in the 

Decision Tree model and increases the predictability of the ensemble model (Yoo, 2015).  

This study used the randomforest() function of the R-programming to develop the model, and used the 

importance() function to deduce the importance of each variables for weights. In addition, as Random 

Forest model uses the bootstrap from probability random extraction, there are no fixed values when 

repeated, thus the study set the seed values through the set.seed() function for identical values. 

Although the Random Forest model can go through OOB (out-of-bag) analysis without dividing the 

model into training datasets and test datasets unlike the Decision Tree model, this study used the training 

datasets and test datasets at a 7:3 ratio for an accurate comparison with other models.  

 

Naïve Bayes Model 

The Naïve Bayes model is based on the Bayes theory, and simplified the calculation of the posteriori 

probability by assuming the conditional independence. The Naïve Bayes model is generally appropriate 

for problems that need to consider various attribute data to measure the total probability of a result. If 

all situations are independent, it is impossible to predict another situation by observing another situation. 

This study used the naiveBayes() function of the e1071 package of R-programming.  

 

Support Vector Machine 

The Support Vector Machine (SVM hereon) model is a model that finds the line or plane with the 

maximum distance between data of different classifications and classifies the data based on the line or 

plane (Lee, Chung, et al., 2016). SVM is generally used as the optimal method out of the classification 

methods that operate well in various data distributions, as it has greater accuracy and lower possibility 

of over-fitting compared to other classification methods (Choi et al., 2013). When SVM predicts a new 

data, it measures the distance between the data and each support vector, and the decision on the 

classification is based on the distance to the support vector and the importance of the support vector is 

learned during the training process. 

This study used the svm() function of the e1071 package of R-programming for the analysis. Although 

there are packages such as e1071, klaR, kernlab, shogun, and svmpath for the SVM model, the e1071 

package realized the OpenSource SVM program library by C++ in R, was first introduced in R and is 

the most objective. 

 

Results 

1) Results of Machine Learning Analysis 

Results of the Decision Tree Model 

The results of the Decision Tree Model were classified into 15 ranges. ①NODE 4(n=240722): When 



Proceedings of the TIEMS Annual Conference, 12-15 November 2019, Goyang, Korea 

 

 

the maximum rainfall in an hour is 72.607mm and under, there are no floods when the maximum rainfall 

in an hour is 70.747mm in non-impermeable areas. ②NODE 6(n=862): When the maximum rainfall in 

an hour is 72.607mm and under, there may be rare cases of floods when the maximum rainfall in an 

hour exceeds 70.747mm in non-impermeable areas and the distance from rivers is 90m and under. ③

NODE 7(n=7616): When the maximum rainfall in an hour is 72.607mm and under, there are no floods 

when the maximum rainfall in an hour exceeds 70.747mm in non-impermeable areas and the distance 

from fivers exceeds 90m. ④NODE 10(n=105616): When the maximum rainfall in an hour is 72.607mm 

and under, there are no floods when the maximum rainfall in an hour is 66.664mm and under in 

impermeable areas. ⑤NODE 11(n= 4948): When the maximum rainfall in an hour is 72.607mm and 

under, there may be rare cases of floods when the maximum rainfall in an hour exceeds 66.664mm and 

is equal to or less than 69.45mm in impermeable areas. ⑥NODE 13(n=306): When the maximum 

rainfall in an hour is 72.607mm and under, there is approximately 25% of flood when the maximum 

rainfall in an hour exceeds 69.45mm and the slope is equal to or less than 0.135 degrees in impermeable 

areas. ⑦NODE 14(n=7421): When the maximum rainfall in an hour is 72.607mm and under, there is 

approximately 2.5% of flood when the maximum rainfall in an hour exceeds 69.45mm and the slope 

exceeds 0.135 degrees in impermeable areas. ⑧NODE 18(n=4712): When the maximum rainfall in an 

hour exceeds 72.607mm, out of the areas with a slope of less than 2.051 degrees, there is approximately 

32% of flood when the slope is 0.579 degrees and under in impermeable areas. ⑨NODE 19(n=8895): 

When the maximum rainfall in an hour exceeds 72.607mm, out of the areas with a slope of less than 

2.051 degrees, there is approximately 10% of flood when the slope exceeds 0.579 degrees in 

impermeable areas. ⑩NODE 21(n=7103): When the maximum rainfall in an hour exceeds 72.607mm, 

out of the areas with a slope of less than 2.051 degrees, there is approximately 2.5% of flood when the 

number of days with heavy rain of at least 80mm/day is 4.042 days and under in impermeable areas. ⑪

NODE 22(n=11685): When the maximum rainfall in an hour exceeds 72.607mm, out of the areas with 

a slope of less than 2.051 degrees, there is approximately 10% of flood when the number of days with 

heavy rain of at least 80mm/day exceeds 4.042 days in impermeable areas. ⑫NODE 25(n=8127): 

When the maximum rainfall in an hour exceeds 72.607mm, out of the areas with a slope of less than 

2.051 degrees, there is approximately 10% of flood when the distance from rivers is 90m and under, and 

the number of days with heavy rain of at least 80mm/day is 4.772 days and under. ⑬NODE 26(n=878): 

When the maximum rainfall in an hour exceeds 72.607mm, out of the areas with a slope of less than 

2.051 degrees, there is approximately 30% of flood when the distance from rivers is 90m and under and 

the number of days with heavy rain of at least 80mm/day exceeds 4.772 days. ⑭NODE 28(n=34082): 

When the maximum rainfall in an hour exceeds 72.607mm, out of the areas with a slope of less than 

2.051 degrees, there is approximately 3% of flood when the distance from rivers exceeds 90m and the 

slope is 4.941 degrees and under. ⑮NODE 29(n=173972): When the maximum rainfall in an hour 
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exceeds 72.607mm, out of the areas with a slope of less than 2.051 degrees, there is approximately 10% 

of flood, there are no floods when the distance from rivers exceeds 90m and the slope exceeds 4.941 

degrees. 

Out of the seven variables in the Decision Tree model for flood prediction, the tree model nodes used 

5 variables of maximum rainfall in an hour(preciptm), impermeability (permeable), slope (slope), 

distance from rivers (river), and the number of days with heavy rain of at least 80mm/day(precipi80) for 

flood prediction. The tree model primarily considered the maximum rainfall in an hour when deciding 

the floods. To evaluate the accuracy of the model, after comparing the test datasets with the results of 

the predicted functions, the accuracy was 98.9%. 

 

 

Results of the Random Forest Model 

When showing the Random Forest model with default values without tuning the mediating variables, 

the number of trees (ntrees) was 500, and the number of possible explanation variables for each node 

(mtry) was 2, and the OOB error was 0.36%. When comparing with the previously classified test dataset, 

the explanation power had an accuracy of 99.65%, the sensitivity was 99.9% and the specificity was 

77.12%. Although the ntree and mtry automatically sets the default values, it is necessary to modify the 

parameter values to improve the functions of the model and the accuracy. Therefore there was a cross-

evaluation to find the appropriate parameter values. 

A total of 9 combinations were compared and analyzed with ntree of 400, 500, and 600 and mtry of 2, 

3, and 4. The combination of the lowest OOB error was (500,3), (600,3), and (600,4), with a low error 

of 0.33% whereas the error of the original model was 0.36%. 

There was a re-analysis with a combination of ntree=600 and mtry=3 with low errors, and the 

importance of each variables of the model is shown from <Table 2>. The results showed that the 

variables affect flood in the order of the maximum rainfall in an hour (preciptm), number of days with 

Figure 1. Results of the Decision Tree Model 
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heavy rain of at least 80mm/day (precipi80), altitude(dem), slope (slope), distance from rivers (river), 

impermeability (permeable), and disaster prevention facilities (defence). 

After comparing the flood prediction of the Random Forest model with the test dataset, out of the 

264,405 test datasets, the model accurately predicted no floods for 261,148 datasets and accurately 

predicted floods for 2,358 datasets, showing an accuracy of 99.66%. The sensitivity was 99.87% and 

the specificity was 80.78%. 

Table 2. Value of Importance of Variables 

 NO YES 
Mean Decrease 

Accuracy 

Mean Decrease 

Gini 

dem 34.366 249.071 48.733 2847.628 

slope 61.338 173.087 93.152 2061.701 

permeable 33.766 69.585 67.065 277.139 

precipi80 60.629 186.688 85.581 3010.869 

preciptm 64.047 540.652 80.552 3258.2 

river 92.909 260.025 179.77 1940.045 

defence 9.3911 4.178 10.174 2.905 

 

Results of the Naïve Bayes Model 

The results of the Naïve Bayes model for flood prediction showed an accurate classification of 98.89% 

and inaccurate classification of 0.011%. 

After comparing the flood predictions of the Naïve Bayes model with the test datasets, out of the 

264,405 test datasets, the model accurately predicted no floods for 244,280 datasets and accurately 

predicted floods for 1,768, resulting in a prediction accuracy of 93.06%. The sensitivity was 93.42% 

and the specificity was 60.57%, and the dual results table of the Naïve Bayes model is shown from 

<Figure 2>. 

 

Figure 2. The Dual Results Table of the Naïve Bayes Model 
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Results of the Support Vector Machine Model 

Gamma and cost are the parameter values of the SVM model. Gamma is the parameter that is required 

in all kernels aside from linear kernels, and cost refers to the cost of violating the restraints. The gamma 

in this study was 0.125 from 1/(data dimension), and the cost was set at the default level of 1. 

The results of the SVM model for flood prediction showed a relatively high accuracy with 98.896%, 

but after verifying the predicted data, it was only possible to predict when there are no floods. The 

distribution of the variables by the results of the classification from the plot() function is shown as boxes 

in <Figure 3>. The boxplot is a graph that summarizes the descriptive statistics such as the median, the 

first quartile and the third quartile in boxes. Therefore it was proven to be inappropriate for flood 

prediction and evaluate the flood risks. In addition, after comparing with the test dataset, out of the 

264,405 test datasets, the model accurately predicted no floods for 261,486 datasets. The model was 

shown to be highly extreme with a sensibility of 100% and specificity of 0%; as it predicts that all data 

will not result to floods, it has a clear error of classification, which can lead to a possible modification 

of the parameters in the future. 

 

2) Comparison of the Machine Learning Analysis 

The Confusion Matrix is generally used to evaluate the classification, how practically the model 

classified and how accurately and thoroughly the model classified. Accuracy, out of the indexes that can 

be identified from the Confusion Matrix is the most prominently used index, which shows how the 

model accurately classified the data by calculating the percentage of the accurately classified data out 

of the entire data. 

After comparing the accuracies of the four models in this study (Decision Tree, Random Forest, Naïve 

Bayes and Support Vector Machines), the accuracy of the Decision Tree was 98.9%, Random Forest was 

99.66%, Naïve Bayes was 93.06% and the Support Vector Machine was 98.9%. The Random Forest 

Figure 3. Distribution boxplot of the Variables (SVM) 
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model was shown to be the most appropriate model for flood prediction <Table 3>. 

 

Table 3. Comparison of Accuracy of the Models 

Decision Tree Random Forest Naive Bayes Support Vector Machine 

98.9% 99.66% 93.06% 98.9% 

 

3) Evaluation of Flood RiskPrediction 

Deducing Weights by Using Random Forest 

The Random Forest model, which was selected in the end, had the least errors by categorizing the flood 

damage of numerous variables with the greatest accuracy. The weights of the variables were calculated 

by the importance in the contribution to the model, and the results were used to develop the flood risk 

map.  

The weights were deduced as shown from <Figure 4> by using the importance() function of the 

randomForest package according to the importance of the influenced variables that contributed to the 

Random Forest model. The values of importance of the influenced variables are showed in positive (+) 

values, but for the variables such as the distance from the streams, it was shown that they have a negative 

(-) relationship with the floods in the Decision Tree, thus were given negative weights when calculating 

the flood risks. 

 

Flood Risk Map 

After evaluating the flood risk predictions, the calculated risks were shown with a map of approximately 

900 thousand areas on a scale of 30m×30m in Busan Metropolitan <Figure 5>. 

The study used the Jenks Natural Breaks Classification from the ArcMap classification to categorize 

and visualize the risks into five levels. Jenks Natural Breaks Classification categorizes the arrangement 

of the data values by optimizing them into natural levels, and minimizes the average deviation and 

Figure 4. Variable Importance 
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maximizes the dispersion based on the mean of the total values within a level. In other words, it 

minimizes the dispersion within a level and maximizes the dispersion among the levels, and is generally 

used in cases of large differences of data such as this model (Jenks, George F. 1967). 

The developed flood risk map of Busan Metropolitan categorizes the flood risks into five levels; the 

areas of high risks were Jeonggwan-eup, Gijang-gun, Geumjeong-gu, Dongnae-gu, and Yeonje-gu, and 

Gangseo-gu was shown to be a low-risk area, safe from floods.  

After comparing the results with the actual areas of flood damage, the actual flooded areas of 2014 

were distributed in the flood risk areas. During the localized heavy rain in Busan Metropolitan in 2014 

greater than 100mm per hour, Gijang-gun had an especially serious damage. The Jwagwangcheon and 

Deokseoncheon in the neighboring areas were flooded and the Naedeok reservoir was collapsed, leading 

to a property loss of approximately 68.5 billion KRW. As the results of comparing the actual cases with 

the analysis results, the two were shown to be similar, it can be determined that the application level of 

the flood risk map is high. 

 

 

Discussion 

This study developed a flood prediction function by using machine learning (Decision Tree, Random 

Forest, Naïve Bayes and Support Vector Machines) to predict in advance the flood damage of Busan 

Metropolitan, and developed a flood risk map by using the Jenks Natural Breaks Classification of 

ArcMap and categorizing the flood risks into 5 levels. After evaluating the predictions of each functions 

by applying them to the evaluated data, it was shown that the Random Forest model was the most 

appropriate. Therefore the weights of the variables were deduced by the importance of the variables on 

the contribution to the Random Forest model, and the results were used to develop the flood risk map. 

The areas at risk of floods in Busan Metropolitan were Jeonggwan-eup, Gijang-gun, Geumjeong-gu, 

Figure 5. Flood Risk Map 
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Dongnae-gu, and Yeonje-gu, and after comparing the results with actual areas of flood damage, the 

actual areas of flood damage were distributed in the high-risk areas of floods. Therefore it can be seen 

that the application level of the flood risk map is high. However, to verify the results of the analysis on 

a more quantitative viewpoint, there should be improvements in the reliability verification process such 

as the comparison between the actual level of damage by the damaged areas and the predicted levels of 

damage.  

Lastly, the flood risk map will lead to avoiding inappropriate developments in areas with flood risks 

and inducing developments for areas with low risks, and will be applied as important data for guidelines 

on flood risk evaluations in the future. 
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