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High speed and safe mobile robot control in
unstructured environments

Roland Lenain, Mathieu Richier, Jean-Baptiste Braconnier, Christophe Cariou, Benoit Thuilot

Abstract—Interventions in emergency situations require to be
fast, accurate and safe, in order to bring a quick assistance. As
it may often be risky for people to bring a direct assistance,the
use of automatic devices, such as mobile robots, in a first step
can offers a safe solution. Nevertheless, it implies the motion
control on low structured environment moreover at important
speed. This may generate important perturbations with respect
to classical motion control law, which cannot be consideredin
such applications. In this paper, a new control approach, taking
into account natural ground characteristics is proposed, in order
to preserve the accuracy and stability of the robot. An adaptive
and predictive control algorithm is firstly designed, basedon both
an extended kinematic and a dynamic representation. It permits
to address path tracking in harsh conditions and preserve a
high level of accuracy without considering the robot stability
in a first step. In addition, an active velocity and trajectory
management algorithm is developped from control point of view
to avoid the rollover risk and obstacle collision thanks to the
notion of traversability. Since the adaptive control law estimates
the dynamic parameters of the robot (grip conditions, centre of
gravity position), a 3D model is available and a stability metric is
evaluated in real time. Beyond this evaluation, a predictive control
principle is deduced to compute the maximal admissible control
variables to preserve the robot stability (i.e. robot maximal
velmocity). Such maximal robot action is then merge to a 3D
digital map obtained via Lidar sensor, in order to evaluate
stability along its expected trajectories, and select the best way
with the highest reachable speed. Capabilities of such approach
is investigated through full scale experiments.

Index Terms—Path tracking control, off-road mobile robots,
stability control, rollover prevention, adaptive and predictive
control

I. I NTRODUCTION

Off-road mobile robots appear as an interesting solution
to answer future needs in various fields of application [29],
such as farming [9], surveillance [27], or military activities.
However, if many potential devices can benefit from innova-
tion in this area (increased work accuracy, decreased levelof
risk), such applications require highly accurate control laws,
able to preserve accuracy and stability even at high speed.
Numerous approaches have been proposed for both motion
control and vehicle stability in urban or on-road contexts.
Based on kinematic [17] or dynamic [7] models, several
control techniques have indeed been developed to achieve
accurate path tracking (see for instance [2], [16] or [30]).
Beyond motion servoing, the proposed work can be used to
improve vehicle stability, even when manually driven. Several
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solutions have then proposed in the robotics community:
steering and braking control ([28] and [1]) or Electronic
Stability Program (ESP) systems [3] are two examples of
stability devices. However, since car-like vehicles are supposed
to move on high-grip ground, such devices and control laws
generally assume rolling without a sliding component, or only
pseudo-sliding with constant tire cornering stiffnesses.As a
result, their direct application in off-road conditions leads to
unsatisfactory results.

Indeed, in an off-road mobile robot context, the complexity
and the variability of the phenomena encountered have to be
tackled to ensure both accuracy and safety. From a simple
control point of view, some studies have addressed this point,
mainly by considering sliding as a perturbation of a nominal
model (kinematic or assuming constant grip conditions). Such
a perturbation is then rejected using robust control approaches,
such as those proposed in [6] or [14], while [15] acts differen-
tially on each wheel speed to reduce the influence of sliding
on the global robot dynamics. Nevertheless, such approaches
appear to be conservative, and since grip conditions are not
explicitly known, they cannot be re-used for stability purposes,
which also depend on such conditions (as can be noticed when
considering stability metrics).

This paper proposes a path-tracking algorithm dedicated to
mobile robots moving at high speed in off-road conditions,
whilst ensuring their stability. As pointed out in [23], rollover
may occur quite easily in the rough terrains under considera-
tion. Typically, path tracking control laws do not account for
such a risk, and the motion imposed to follow the desired
trajectory may lead to hazardous situations (when following a
curve at high speed, for instance). In the proposed solution, the
perturbations linked to the variable grip conditions mentioned
above are tackled thanks to a multi-model observer, based on
[13], mixing kinematic and dynamic modeling. It enables a
real-time estimation of the ground contact properties, which
are consequently taken into account through an adaptive and
predictive control scheme acting at two levels: one control-
ling the steering angle (for path tracking) and the second
controlling the robot’s linear velocity (for robot stability).
This control strategy is as follows: first a nonlinear control
law, accounting for sliding thanks to a model-based adaptive
approach, is designed. Predictive curvature servoing is added
in order to anticipate actuator settling time and robot inertia.
Such a control system is designed to obtain lateral behavior
independent from robot velocity. Provided that the desired
path is dynamicly achievable, the robot’s speed can then be
modified without impacting tracking performances. Usually
fixed to a constant set point, this variable is here modulated
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in order to ensure robot stability thanks to the prediction of
rollover risk.

Such a prediction is made possible thanks to the real-time
evaluation of a stability metric. In this paper the Lateral Load
Transfer (LLT - [10]), already elaborated in previous work
[5], is considered. Its advantages, with respect to other stability
metrics such as the Static Stability Factor (SSF) [19], the force-
angle measurement criterion [21] - [8] or the Zero Moment
Point (ZMP - usually proposed to investigate humanoid and
mobile robot stability, [26]) are that on the one hand it does
not demand a huge and expensive perception system, and
on the other hand it is not dependent on thresholds which
are particularly difficult to tune in an outdoor environment.
Moreover, the computation of such a metric relies particularly
on grip conditions (adapted with the observer designed for path
tracking purposes) and on robot velocity, which is considered
as a free parameter in steering control. As a result, this last
variable can be modulated to regulate the selected metric.
A control law relying on the Predictive Functional Control
principle (PFC - [25]) is then designed to calculate, in real
time, the velocity leading to a critical value of the stability
metric in the near future. Such a value can be considered
as the maximum admissible velocity for the robot to ensure
stable behavior. As a result, the lower of the two values for
the desired and the maximum admissible velocity is imposed
on the robot, so that the mobile robot can accurately follow a
desired trajectory as fast as possible from a stability point of
view, whatever the grip conditions.

The paper is organized as follows. First, different levels of
modeling, representative of the robot dynamics and accounting
for low and variable grip conditions, are presented. These
models enable a multi-scale observer, detailed in the second
part, to be designed. It supplies a real-time estimation of the
variables and parameters representative of off-road dynamics:
sideslip angles and tire cornering stiffnesses. Once these
variables are provided by the observer, the models used for
control design are entirely known. The control strategy is then
derived in two steps: path tracking and velocity control. The
capabilities of the proposed control strategy are investigated in
actual experiments on an off-road mobile robot, able to reach
a speed of 7m.s−1. These show the efficiency of the approach
for accurate and safe path tracking in off-road conditions.

II. M OBILE ROBOT MODELING

Usually, vehicle dynamics are derived from a representation
based on the assumption of rolling without sliding at the
tire/ground contact point (see for instance [17]). If such a
hypothesis is relevant in the urban vehicle context, its direct
transposition to all-terrain vehicle leads to inaccurate results.
In order to be representative of vehicle motion in an off-road
context, low grip conditions have to be properly modeled.
Although complete models can be derived from mechanical
equations (such as Newton-Euler principles), they appear
to be insufficiently flexible for control purposes. Numerous
parameters are indeed required, but they appear to be hard
to measure and potentially variable in a natural environment.
In this paper, an alternative representation is proposed for

both motion and stability control. It is based on a multi-
model approach, taking advantage of both kinematic and
dynamic levels, without requiring the knowledge of numerous
parameters. As depicted in Fig. 1, three modeling levels are
then considered for different purposes:

• First, an "extended kinematic model" is derived. It con-
sists of adding sideslip angles to a pure kinematic ap-
proach to preserve its relevancy with respect to sliding
effects. The preservation of a kinematic structure enables
a suitable control law to be derived easily, ensuring
accurate motion control as soon as the sideslip angles
are correctly estimated.

• The second representation is a partial dynamic yaw
model, allowing dynamic effects to be accounted for to
preserve the reactivity of the global algorithm. This model
is considered for the estimation of cornering stiffnesses.
Their estimation permits to reconstruct in real time the
sideslip angles used in the "extended kinematic model"
so as to compute the motion control law.

• Finally, a partial dynamic roll model is computed in order
to describe rollover behavior. It takes into account the
cornering stiffnesses (estimated thanks to the previous
representation levels) and suspension properties in order
to compute the Lateral Load Transfer variation and to
preserve the robot’s dynamic stability.

Fig. 1. Interaction scheme of considered models

A. Vehicle kinematic model

As is typaically the case in mobile robot control, the motion
is here described thanks to a bicycle representation, wheretwo
wheels are considered (one for the front axle and the other for
the rear axle). Contrary to [17], in which the directions of the
speed vectors are directly superposed with the tire orientation,
two sideslip angles are considered here. These variables,α f

and αr (respectively for the front and rear axle), allow for
sliding effects to be accounted for in the robot’s motion.
Moreover, as path tracking control in off-road conditions is
addressed here, vehicle modeling is derived with respect to
the path to be followed (denotedΓ). The notations used in the
following (see also Fig. 2) are:

• R0(x0,y0,z0) is the frame attached to the ground,
• A andB are respectively the centers of the front and rear

axles, where the virtual wheels of the bicycle model are
located.B is the point to be controlled.

• v is the vehicle linear velocity at pointB, assumed to be
strictly positive, andvF denotes the linear velocity at the
centerA of the front wheel.
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• δ is the front steering angle. It constitutes the second
control variable.

• α f andαr are the front and rear tire sideslip angles.
• M is the point on the reference pathΓ, which is closest

to B. M is assumed to be unique.
• s is the curvilinear abscissa of pointM alongΓ.
• I(s) denotes the curvature center of pathΓ at point M,

so thatc(s) is the curvature ofΓ at that point.
• y is the vehicle lateral deviation at pointB with respect

to Γ.
• ψ is the orientation of the vehicle centerline with respect

to an absolute frameR0(x0,y0,z0).
• ψΓ(s) is the orientation of the tangent toΓ at point M

with respect toR0(x0,y0,z0).
• ψ̃ = ψ − ψΓ(s) is the vehicle angular deviation with

respect toΓ.
• L is the vehicle wheelbase.

Fig. 2. Path tracking parameters

It can be established (see [17] for model derivation in the non-
sliding case and [11] for the integration of sideslip angles)
that: 




ṡ = v cos(ψ̃+αr )
1−c(s)y

ẏ = v sin(ψ̃ +αr)

˙̃ψ = v [cos(αr)λ1−λ2]

(1)

with: λ1 =
tan(δ+α f )−tan(αr )

L , λ2 =
c(s)cos(ψ̃+αr )

1−c(s)y
It can be observed that this model becomes singular when

y = 1
c(s) , i.e. whenB is superposed withI(s). This problem

is not encountered in practice, since on the one hand actual
path curvatures are quite small, and on the other hand the
vehicle remains close toΓ when properly initialized. The
lateral deviation is thus always smaller than the radius of
curvature ofΓ.
As described in [13], as soon asα f and αr are correctly
known, such a model allows robot motion to be accurately
decribed, when still preserving a kinematic structure. This is
interesting from a control point of view, since this kind of
model can be turned into an exact linear form, making it easier
to computate a control law (as detailed in Section IV-A)

B. Vehicle dynamic model

Since model (1) is based on a kinematic representation, it
does not account for dynamic effects (such as inertia). As a
result, the possible estimation of sideslip angles relyingon this
model (as in [11]) is not reactive enough at high speed. To go
further and improve observer reactivity, a dynamic framework
is required. Moreover, the description of rollover motion relies
mainly on dynamic effects and two representations are then
introduced: one is a yaw representation (Fig. 3(a)) and the
other is a roll representation (Fig. 3(b)). The yaw model aims
at describing the overall vehicle motion on the ground and
consists of a bicycle model of the mobile robot. It is used to
estimate some vehicle motion variables (such as the lateral
acceleration of the vehicle center of gravity) and sideslip
angles. As already depicted in Fig. 1, these variables are
then injected into the second part of the dynamic model,
characterized by a roll 2D projection (shown on Fig. 3(b)),
used to compute roll angle, roll rate and finally theLLT. The
notations used in this paper, and used in Fig. 3(a) and Fig. 3(b),
are listed below:

• R1(x1,y1,z1) is the yaw frame attached to the vehicle,
• R2(x2,y2,z2) is the roll frame attached to the suspended

mass,
• ϕv is the roll angle of the suspended mass,
• β is the global sideslip angle, i.e. the sideslip angle at

the vehicle center of gravity,
• u is the linear velocity at the roll center,
• a andb are the front and rear vehicle half-wheelbases so

that L = a+b,
• d is the vehicle track,
• h is the distance between the roll centerO′ and the vehicle

center of gravityG,
• Ix, Iy, Iz are the roll, pitch and yaw moments of inertia,
• P = mg is the gravity force on the suspended massm,

with g denoting gravity acceleration,
• Ff andFr are the front and rear lateral forces,
• Fn1 andFn2 are the normal component of the tire/ground

contact forces on the vehicle left and right sides, repec-
tively,

• Fa is a restoring force parametrized bykr andbr , the roll
stiffness and damping coefficients:

−→
Fa =

1
h
(krϕv+br ϕ̇v)

−→y2 (2)

Roll stiffnesskr and distanceh are assumed to be initially cal-
ibrated (see [4]). Roll dampingbr is experimentally evaluated
(via a driving procedure) and the other parameters (wheelbase,
weight, etc) are directly measured.

1) Motion equations:In order to derive motion equations
from the yaw projection shown in Fig. 3(a), analytical expres-
sions of lateral forcesFf andFr must be supplied. An accurate
tire model, such as the celebrated Magic formula [20], could
be considered, but it would require the knowledge of numerous
parameters, hardly accessible in real-time. Therefore, a simple
linear tire model has here been chosen. It can be expressed
as: {

Ff = Cf (.)α f

Fr = Cr(.)αr
(3)
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(a) Yaw projection. (b) Roll projection.

Fig. 3. Vehicle modeling.

This model requires only the knowledge of the cornering
stiffnessesCf (.) and Cr(.). In order to reflect both the non-
linear behavior of the tire and grip condition variations,Cf (.)
and Cr(.) are considered as slowly varying (compared to
sideslip angles) and estimated in real time thanks to the mixed
observer detailed in Section III. Only one parameter by wheel
axle is then needed, contrary to classic tire models. As soon
as cornering stiffnesses are known, the dynamic equations of
the yaw model (see [31]) can be expressed as:




ψ̈ = 1
Iz

(
−aCf α f cos(δ )+bCrαr

)

β̇ = − 1
um

(
Cf α f cos(β − δ )+Crαr cos(β )

)
− ψ̇

αr = arctan
(

tan(β )− bψ̇
ucos(β )

)

α f = arctan
(

tan(β )+ aψ̇
ucos(β )

)
− δ

u = vcos(αr )
cos(β )

(4)
2) Rollover equations:In order to describe the rollover

risk, several metrics can be computed, depending on the
application, the available measurements, or the phenomenon to
be described [22]. As detailed in [5], in the framework of path
tracking control, robot stability can be dynamically described
by the Lateral Load Transfer metric. The general expression
of this metric (expressed for instance in [18] or in [1]) is given
by:

LLT =
Fn1−Fn2

Fn1+Fn2
(5)

where Fn1 and Fn2 represent the normal component of the
tire/ground contact forces as shown in Fig. 3(b).

The LLT then describes the distribution of contact forces
along the lateral side of the robot. It can be deduced from (5)
that a unitary value of|LLT| corresponds to the lift-off of the
wheels on the same side of the robot. As a result, rollover risk
is quite high. In the following, the robot behavior is considered
as safe when the absolute value of LLT is below a threshold:
|LLT| ≤ LLTlimit . In order to enable the estimation and the
control of such a metric, an expression of the normal forces
must first be derived from the roll model (see Fig. 3(b)). With
this aim several initial assumptions have been preliminary:

• The entire vehicle mass is suspended, which implies
insignificant non-suspended mass (essentially tires),

• The suspended mass is assumed to be symmetrical with
respect to the two planes (z2, y2) and (x2, z2). The inertial
matrix is then diagonal:

IG/R2
=




Ix 0 0
0 Iy 0
0 0 Iz


 (6)

• Sideslip anglesα f , αr and β are assumed to be small
(corroborated by experiments),

• The vehicle velocityu at the roll center is assumed to be
equal to that at the rear axle (i.e.u≈ v), see (4).

Using these assumptions, theLLT indicator can be evaluated
from the Fundamental Principle of the Dynamic (FPD) applied
in the [y2, z2] plane to the overall system, subjected to four
external forces (P, Fa, Fn1 andFn2). More precisely, variations
of ϕv, Fn1 andFn2 can be derived as:

ϕ̈v =
1

hcos(ϕv)
[hϕ̇v

2sin(ϕv)+hψ̇2sin(ϕv)+uψ̇ cos(β )+

u̇sin(β )+uβ̇ cos(β )−
(

krϕv+br ϕ̇v

mh

)
cos(ϕv)] (7)

Fn1+Fn2 = m
[
−hϕ̈vsin(ϕv)−hϕ̇v

2cos(ϕv)+g

−

(
kr ϕv+br ϕ̇v

mh

)
sin(ϕv)

]
(8)

Fn1−Fn2 =
2
d

[
Ixϕ̈v+(Iz− Iy)

[
ψ̇2cos(ϕv)sin(ϕv)

]

− hsin(ϕv)(Fn1+Fn2)] (9)

In order to infer the roll angle and the LLT from (7)-(9), the
global sideslip angle and the yaw rate are both required. Since
the former cannot be measured, an observer was designed and
is presented below.

III. E STIMATION OF GRIP CONDITIONS AND INDIRECT

MEASUREMENT OF VARIABLES

As was pointed out in Section II, models may describe
accurately both the robot motion and the stability metric as
soon as certain variables representative of sliding effects can
be known: front, rear and global sideslip angles. Unfortunately,
such variables are not easily accessible to direct measurement.
It has been shown, for instance in [12], that they can be
estimated using only the extended model (1). Nevertheless,
a mere kinematic approach for observation purposes does
not encompass the entire robot dynamic and leads to a low-
reactivity estimation, suitable at low speeds (up to 3m/s),
but inefficient at higher velocities because of the delay thus
introduced in the control laws.
This paper is focused on off-road mobile robots moving at
relatively high speed, and a more reactive approach is thus
required, accounting for dynamic effects. A mixed observer,
using kinematic and dynamic modeling, was developed in [13]
and applied to the context of this paper. Its general principle
is described in Fig. 4.
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Fig. 4. Scheme of the mixed kinematic and dynamic observer

The observation loop consists of three successive steps, each
one relying on the variable supplied by the previous step.
Such an observation scheme enables the advantages of each
modeling type to be exploited: the accuracy and reactivity
of dynamic models and the simplicity (in terms of required
parameters) of the kinematic representation. The calculation
step are detailed in [13] and are summarized below.

A. Step 1: Preliminary sideslip angle estimation

The first step in the observation algorithm consists of
estimating preliminary values for sideslip angles from the
extended kinematic model (1), in order to feed the dynamic
motion equations.

For path tracking to be performed, mobile robots have
to be equipped with a localization device. Measurements of
variabless, y and ψ̃ are therefore available and only the
two sideslip anglesα f and αr are unknown in the extended
kinematic model (1). Since two variables have to be estimated,
a 2-dimensional observation model is introduced, consisting of
the second and third equations of model (1) associated with
robot lateral motion. The state vector of this observation model
is denotedXobs= (y, ψ̃)obs, the variablesv and δ are treated
as measured variables andUobs= (α f ,αr) is regarded as the
control vector of the observation model. It has been shown that
a non-linear control law can be designed forUobs so that the
observation model state vectorXobs exponentially converges
on the actual valuesXmes= (y, ψ̃)mes supplied by the robot
sensors. Such a control law therefore ensures that the obser-
vation model is representative of the robot’s actual behavior,
and consequentlyUobs can be regarded as an estimation of the
actual sideslip angles.

Nevertheless, this first sideslip angle estimation cannot be
as accurate as desired since dynamic effects are neglected.For
instance, mobile robot inertia, which is not accounted for in
the extended kinematic model (1), introduces some delay when
the robot is turning. Such an effect is falsely interpreted as
sliding by this observer, generating transient irrelevantvalues
for sideslip angles. This preliminary estimation is however
satisfactory at low speed or during steady state motion.

B. Step 2: Cornering stiffness observation

When considering the dynamic model (4), the unknown
variables are solely the cornering stiffnessesCf and Cr : ψ̇,

v andδ can be measured, a preliminary estimate of the front
and rear sideslip angles, denotedᾱ f and ᾱr in the following,
was obtained in step 1, and a preliminary estimate of the global
sideslip angle, denoted̄β , can then be inferred from the third
and fourth equations in model (4):

β̄ =
bᾱ f +aᾱr+bδ

L
(10)

Since 2 variables have to be estimated, again a 2-dimensional
observation model is considered, consisting of the first and
second equations of model (4) associated with robot yaw mo-
tion. For this second observation model, the state and control
vectors are respectivelyX1 = [ ˙̂ψ1 β̂1]

T and U1 = [Cf Cr ]
T .

v and δ are still treated as measured variables, so that the
observation model equations (deduced from (4)) are:

Ẋ1 = A1X1+B1U1 (11)

where:

A1 =

[
0 0
−1 0

]
, B1 =

[
−

aᾱ f cos(δ )
Iz

bᾱr
Iz

−
ᾱ f cos(δ )

um − ᾱr
um

]
(12)

Matrix B1 is properly defined provided that robot velocity is
non-null, which is always assumed in path tracking applica-
tions.

Then, following the same approach as in step 1, a control
law is designed forU1 so that the observation model state
vectorX1 exponentially converges on a vectorX̄ representative
of the robot’s actual behavior, namelȳX = [ ˙̄ψ β̄ ]T where ˙̄ψ
is the measured yaw rate supplied by robot sensors andβ̄
is the global sideslip angle estimated in step 1 (see (10)).
This control law ensures that observation model (11) is rep-
resentative of the robot’s actual behavior, so thatU1 can be
regarded as an estimation of the actual cornering stiffnesses.
The control law is properly defined provided that the robot is
turning (since obviously cornering stiffnesses, representative
of robot yaw motion, cannot be evaluated when the robot is
moving in a straight line). Thus, when the robot is not turning,
this second observer has to be frozen, and cornering stiffnesses
are then kept equal to their previous values (this is not a serious
concern, since sliding is very limited in these situations).

β̄ has been used as a set point for this observer, although
it may present delayed values (as explained in step 1). First,
the impact of these delays may be reduced by imposing a
sharper convergence on̄̇ψ (a reliable measurement) rather than
on β̄ when tuning observer gain. Secondly, the quite relevant
cornering stiffness estimate obtained in this step may, in turn,
be used in the last step to refine sideslip angle estimation.

C. Step 3: Sideslip angle estimation

Since cornering stiffness estimates were provided in step 2,
the first two equations in model (4) can now be regarded more
classically as a state space model whose state and control
vectors areX2 = [ψ̇ β ]T and δ . Moreover, since sideslip
angles, as well as the steering angle, never exceed quite small
values, trigonometric functions can be linearized, so thatrobot
yaw model (4) can be presented as:

Ẋ2 = A2X2+B2δ (13)
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where:

A2 =




−a2Cf −b2Cr
uIz

−aCf +bCr
Iz

−
aCf −bCr

u2m
−1 −

Cf +Cr
um


 , B2 =

[
aCf
Iz
Cf
um

]
(14)

A standard observer can then be designed to estimate the
global sideslip angle. Once more, the measurement vector used
to drive this estimation isX̄ = [ ˙̄ψ β̄ ]T . The global sideslip
angleβ̄ obtained in step 1 (see (10)) is still used as a virtual
measurement, since its value during steady state motion is
always relevant. However, in order to track sideslip angle
variations accurately at transient phases, a sharper conver-
gence on the reliable measurement˙̄ψ is again imposed when
tuning observer gain. Since dynamic effects are described in
model (4), this second sideslip angle observer can display
higher reactivity than the preliminary observer defined in
step 1, built from the extended kinematic model (1).

More precisely, letX̂2 = [ ˙̂ψ2 β̂2]
T and X̃2 = X̂2− X̄ denote

respectively the observer state and the observer error. Then the
standard observer equation associated with model (13) is:

˙̂X2 = A2 X̂2+B2δ +G2 X̃2 (15)

and combining (13) and (15) leads to the following error
dynamics:

˙̃X2 = (A2+G2) X̃2 (16)

Observer errorX̃2 clearly converges on zero, provided that
observer gainG2 is chosen such thatA2 + G2 is negative
definite. Of course, the settling time of the cornering stiffness
observer defined at step 2 has to be set shorter than the settling
time of this observer, so that relevant values forCr and Cf

may be available in theA2 and B2 matrices. In addition,G2

has also to be tuned such that convergence on˙̄ψ has higher
priority than convergence on̄β , as discussed above.

This 3-step algorithm constitutes the mixed kinematic and
dynamic sideslip angle observer. In the following,β̂2 is the
reactive global sideslip angle estimation to be used withinthe
control law for robot stability, designed from roll model (7)
(see Section IV-B). The front and rear sideslip angles to
be used within the path tracking control law, designed from
extended kinematic model (1) (see Section IV-A), can finally
be obtained from the third and fourth equations in (4):





α̂r = arctan
(

tan(β̂2)−
b ˙̂ψ

u cos(β̂2)

)

α̂ f = arctan
(

tan(β̂2)+
a ˙̂ψ

u cos(β̂2)

)
− δ

(17)

IV. M OBILE ROBOT CONTROL

In the proposed approach, robot control is split into two
control laws, as depicted in Fig. 5. The first (upper part in
the figure) is dedicated to path tracking and acts only on the
front steering angleδ . The longitudinal velocity is viewed
as a measured parameter, and the steering control expression
is tuned with respect to the curvilinear abscissa of the robot
along the reference path, so that the robot’s lateral behavior is
actually independent from its longitudinal velocity (as long
as it is non-null). Such a property enables robot velocity
to be acted upon without impacting tracking performances.
Usually set to a constant value, this variable is modified in

real-time if robot stability is jeopardized: robot velocity is then
controlled in order to keep the LLT under a given threshold;
this constitutes the second part of the approach (lower partin
Fig. 5).

Fig. 5. Global control scheme of autonomous robot

A. Path tracking control

Since accurate sideslip angle estimates are provided by (17),
all the variables in extended kinematic model (1) are therefore
available. This can then be used to design a control law for the
front steering angleδ so that the mobile robot converges on
the desired pathΓ. More precisely, the objective is to ensure
the convergence of the lateral errory on zero. As detailed
in [13], this objective can be accurately achieved with control
law (18), designed according to the following steps:

• Since the structure of model (1) is still identical to the
structure of mobile robot models derived under a non-
sliding assumption, it can be converted into chained form
(see [17]) via non-linear state and control transformations.

• Next, the equations describing robot lateral behavior can
be converted exactly into a linear model when replacing
the time derivation by a derivation with respect to curvi-
linear abscissas.

• Consequently, a classical linear control approach (namely
PD control) can be proposed to drive the linear system
thus obtained.

• Finally, inverse state and control transformations provide
the non-linear steering control expression (18).

δ = arctan
(

tan(α̂r)+
L

cos(α̂r )
( c(s)cosψ̃2

E + F cos3 ψ̃2
E2 )

)
− α̂ f

(18)
with:





ψ̃2 = ψ̃ + α̂r

E = 1− c(s)y
F = −Kpy−Kd E tanψ̃2+ c(s)E tan2ψ̃2

(19)

Injecting steering law (18) into model (1) ensures that:

d2y
d s2 +Kd

d y
d s

+Kpy= 0 (20)

In view of equation (20), the exponential convergence of the
mobile robot on the desired pathΓ is clearly attained, and
tuning control gains(Kp, Kd) enables a settling distance to be
specified (since derivations within (20) are derivations with
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respect to the curvilinear distances), so that the robot’s lateral
behavior is actually independent from its velocity.

From a theoretical point of view, control law (18) can
ensure highly accurate path tracking, whatever the shape of
the desired path (since curvaturec(s) is explicitly taken into
account within (18)), and whatever the grip conditions (since
sideslip angles, reflecting current grip conditions, have been
incorporated within (18)). However, in practice, the imper-
fections introduced by the steering actuator lead to transient
overshoots at curvature transitions: for instance, when the
robot enters into a curve, because of actuator delay and settling
time, the steering value proposed by (18) is not instantaneously
applied and the robot transiently moves away from the desired
path. In order to preserve high accuracy path tracking at
curvature transitions, actuator characteristics are incorporated
into (18), relying on a predictive control approach. First,it can
be shown (see [12]), that control law (18) can be divided into
two additive terms:

δ = δTra j + δDeviation (21)

These terms perform two different tasks:

• δTra j: non-null term when deviations and sliding are equal
to zero. This term mainly depends on reference path
curvature.

• δDeviation: null term when deviations and sliding are equal
to zero. This term mainly depends on sliding parameters
and deviations(y, ψ̃2) and ensures their convergence to 0.

As sliding conditions are unpredictable, the prediction al-
gorithm can only be applied toδTra j. At current timet, the
path curvature at timet+H is inferred from the knowledge of
the reference pathΓ and is used to compute the objective
δ Ob j to be attained by the actual steering angle at time
t +H. Then, relying on Predictive Functional Control (PFC,
see [24]), a control sequence forδTra j is computed with the
aim of minimizing, in time window[t, t +H], the quadratic
difference between a desired variation for the actual steering
angle attainingδ Ob j at t +H and the steering angle variation
computed over[t, t +H] from the actuator model. The first
term of this optimum control sequence, calledδ Pred

Tra j , is then
substituted for the previous trajectory termδTra j , leading to
the following overall control law expression:

δ = δ Pred
Tra j + δDeviation (22)

This approach enables curvature variations to be anticipated:
for instance, if the robot is supposed to enter a bend, a set
point corresponding to the future curvature is sent (via the
term δ Pred

Tra j ) to the steering actuator some instants before the
robot actually enters into the bend. The actual steering angle
can then reach its expected value at the right moment, com-
pensating for the actuator settling time and delay. Of course,
the perturbations and other phenomena are still accounted by
the reactive termδDeviation, allowing sliding and unexpected
errors to be compensated for. The overall control law (22) can
then achieve high accuracy path tracking whatever the grip
conditions and whatever the reference path shape, as shown
in the results section.

B. Lateral Load Transfer limitation

Path tracking was addressed in Section IV-A solely as a
steering control design problem. However, velocity control
also has to be considered: a reference path can be tracked
at limited speed by an actual robot, but not at higher speeds,
since the robot wheels may then take off in the curved parts
of the path and the robot may roll over, i.e. the path may
no longer be achievable safely at high speed. The maximum
velocity ensuring that the path may be safely followed cannot
be computeda priori from geometrical considerations, since
it clearly depends on grip conditions that are unknown and
moreover varying. Consequently, in addition to the steering
control law designed in the previous section, velocity control
guaranteeing robot stability is now investigated.

1) Strategy of LLT limitation:In order to avoid the risk of
rollover, the limitation of theLLT (i.e. |LLT| ≤ LLTlimit ) is
considered through the control of vehicle speed. The idea is
to compute at current instantt the velocity leading toLLTlimit

at an instantt + H̄. This value can then be considered as the
maximum admissible velocity at current instantt (denotedvmax

in the following) to avoid lateral rollover situations overthe
time horizon [t, t + H̄]. Relying on this variable, the speed
limitation process consists then in the following steps, shown
in Fig. 5:

• The "Min" block supplies the velocity control inputvinput

to be applied to the vehicle. This variable is deduced
from the comparison between the desired velocityvd (a
constant velocity is specified at the beginning of the test)
and the maximum velocityvmax: vinput = min(vd,vmax)

• The measurements shown in Fig. 5 are then used to
estimate in real-time the sliding parameters and cornering
stiffnesses using the mixed observer described in Sec-
tion III,

• Next, these stiffnesses, the measured robot velocity and
the measured steering angle are integrated into the vehicle
roll model in order to compute the roll angleϕv and the
LLT (see Section IV-B2),

• Finally, the roll angleϕv, the sliding parameters and the
steering angle are processed in the "Predictive Control"
block in order to supply the maximum admissible velocity
vmax ensuring the condition|LLT| ≤ LLTlimit . The com-
putation ofvmax is detailed in Section IV-B3. It is based
on the Predictive Functional Control (PFC) formalism,
detailed in [24] and applied in [32] for manipulation
robotics.

2) Roll angle evolution equation :As can be seen in equa-
tions (8) and (9), theLLT does not rely explicitly on vehicle
velocity, but on the roll angle; vehicle velocity is then designed
to controlϕv and indirectly the LLT. As detailed in [25], the
PFC formalism requires the use of linear equations. A first
step then consists in linearizing the non-linear equation (7)
describing the variations ofϕv. In the following, ϕvNL and
ϕvL denote the roll angle supplied respectively by the non-
linear model (7) and by the linear model to be derived.
In order to achieve linearization, the following assumptions
are considered:

• Sideslip angles are quite small and consequently, based
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on third and fourth equations in (4), the vehicle yaw rate
can be approximated by:

ψ̇ = u

(
δ +α f −αr

L

)
(23)

• Since β and u are slow-varying with respect tȯψ,
termsuβ̇ cos(β ) and u̇sin(β ) in equation (7) are largely
negligible with respect touψ̇ cos(β ) (corroborated by
advanced simulations and experiments).

Linearization of (7) around(ϕv, ϕ̇v) = (0,0) then leads to:

ϕ̈vL =
1
h

[
u2cos(β )

(
δ +α f −αr

L

)
−

(
kr ϕvL+br ϕ̇vL

mh

)]

(24)
Sinceu≈ v (see the fifth equation in (4)), the linear state-space
model to be used in PFC algorithm is then:

{
Ẋ = AX+Bw
Y = CX

(25)

with the state-space vectorX = (ϕvL, ϕ̇vL)
T , the control vari-

ablew= v2 and matrices:

A=

[
0 1
−kr
mh2

−br
mh2

]
B=

[
0

cos(β )
(

δ+α f −αr
hL

)
]

C=
[

1 0
]

Relying on the Kalman criterion, the controllability of model
(25) can be established provided thatψ̇ 6= 0. In other words,
the linear roll angleϕvL cannot be controlled when the vehicle
is moving in straight line, which is quite natural. Then, close
to neutral steering (|δ | below some steering limit), the PFC
control algorithm is not activated andvinput = vd (this is not at
all a limitation, since rollover never occurs in such situations).

3) Predictive maximum velocity computation :The PFC
algorithm can now be applied to linear system (25) in order
to derive the maximum velocityvmax. The general principle
of the predictive approach is summarized in Fig. 6. Roughly,
it consists in finding the control sequence which leads to the
"best" future set point after a specified prediction horizonH̄.

Fig. 6. Prediction principle.

More precisely, the algorithm consists of the following steps:

• The first step consists in computing the roll angle value,
denotedϕvtarget in the following, leading to aLLT steady
state value equal to a chosen critical thresholdLLTlimit .
Relying on the following assumptions:̈ϕv = ϕ̇v = 0 and
ξ1 =(Iz− Iy)[ψ̇2 cos(ϕv)sin(ϕv)] is largely negligible with
respect toξ2 = hsin(ϕv)(Fn1 + Fn2) (in view of mobile
robot properties and actual conditions; the magnitude of
ξ1 stays below 100sin(ϕv), while the magnitude ofξ2

is at least equal to 3000sin(ϕv)); it can be derived from
equations (8) and (9) that:

|LLT|=

∣∣∣∣
Fn1−Fn2

Fn1+Fn2

∣∣∣∣≈
∣∣∣∣
2
d

hsin(ϕv)

∣∣∣∣ (26)

As a result:

ϕvtarget=±arcsin

(
d
2h

LLTlimit

)
(27)

• Next, a desired variationϕvRe f, joining the current state
ϕvNL to ϕvtarget within the prediction horizon, is defined.
Typically a first order discrete system is considered:

ϕvRe f[n+i]
= ϕvtarget− γ i.

(
ϕvtarget−ϕvNL[n]

)
(28)

The subscripts[n] and [n+ i] (with 0 ≤ i ≤ h̄) denote
respectively the current time instantt and successive time
instants up tot + H̄ (since [n+ h̄] corresponds to time
instant t + H̄) and γ is a parameter tuning the settling
time for the desired variationϕvRe f to reach the set point
ϕvtarget (with γ ∈]0, 1[).

• Then, at current time sample[n], an optimal control
sequence (w[n] , ... ,w[n+h̄] ) bringingϕvL to ϕvtarget is com-
puted through the minimization of a quadratic criterion
hereafter notedD[n]:

D[n] =
h̄

∑
i=1

(
ϕ̂vL[n+i]−ϕvRe f[n+i]

)2
(29)

where ϕ̂vL[n+i] denotes the predicted roll angle obtained
from linear model (25) and a control sequence chosen as
a linear combination of some base functions:

w[n+i] =
nB

∑
k=1

µk[n]wBk[i] , 0≤ i ≤ h̄ (30)

where µk[n] are the coefficients to be supplied by the
minimization ofD[n], nB is the number of base functions
and wBk are the base functions, generally chosen as
polynomials:

wBk[i] = ik−1, ∀k (31)

Finally, since the linearization of equation (7) introduces
some approximations that necessarily impair the accuracy
of the predicted values of the roll angle and thus of the
LLT, the criterion eventually minimized is the extended
criterion D2[n], incorporating the current and expected
discrepancies between the roll angle values supplied by
the nonlinear model (7) and the linear model (25):

D2[n] =
h̄

∑
i=1

(
ϕ̂vL[n+i]+ ê[n+i]−ϕvRe f[n+i]

)2
(32)

where the future model error̂e[n+i] is defined as:

ê[n+i] = e[n] = ϕvNL[n] −ϕvL[n] , 1≤ i ≤ h̄ (33)

If the optimal control sequence obtained from the minimiza-
tion of D2[n] was applied over the prediction horizon, then
ϕvL andLLT would reach respectivelyϕvtarget andLLTlimit at
time sample[n+ h̄]. Therefore, the first element of the control
sequence, i.e.w[n], has to be considered as the maximum
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control input value, and the maximum vehicle velocity at
current time sample[n] is defined as:

vmax=
√

w[n] (34)

The PFC algorithm comprises two parameters to be tuned: the
gain γ (specifying the shape of the desired variation) and the
prediction horizonH̄.

V. RESULTS

A. Experimental setup

The electric off-road vehicle depicted in Fig. 7 is used as
an experimental platform. Designed for all-terrain mobility, it
can climb slopes of up to 45◦, its maximum speed is 7m.s−1,
and it has the following properties:

Total mass . . . . . . . . . . . . . . . . . . . m=350 kg
Yaw inertia . . . . . . . . . . . . . . . . . . Iz =270 kg.m2

Wheelbase . . . . . . . . . . . . . . . . . . . L =1.2 m
Rear half-wheelbase . . . . . . . . . . b=0.58 m
Maximum steering angle . . . . . . δmax= ±20◦

→ minimum radius of curvature Rmin =
L

tan(δmax)
=3.3 m

TABLE I
EXPERIMENTAL ROBOT DYNAMIC PARAMETERS

The main exteroceptive sensor on-board is a "Magellan
ProFlex 500" RTK-GPS receiver, which supplies absolute
position measurements accurate to within 2cm at a 10Hz
sampling frequency. The GPS antenna is located vertically
above the center of the rear axle, so that the absolute position
of the point to be controlled is straightforwardly provided
by the sensor. In addition, a gyrometer supplying a yaw rate
measurement accurate to within 0.1◦/s is fixed to the chassis.

Fig. 7. Experimental platform

In order to highlight the performances of the proposed con-
trol strategy, both in terms of tracking accuracy and stability,
the reference path depicted in Fig. 8 was recorded manually,at
a velocity of 1m.s−1. It is composed of two successive circles:
one to the right, performed on asphalt, and the other to the
left, performed on wet grass. Such a reference path was chosen
since it enables several critical points to be investigated:

• The short path between the two circles is penalizing from
the curvature variation point of view, thus testing the
capabilities of the predictive part of the path tracking
control law.

• The modification in grip conditions over the course of
the path (from asphalt to grass) allows the efficiency of
the sideslip angle observer and of the adaptive part of the
path tracking control law to be invesstigated.

• The radius of the two circles is 5m, close toRmin (see
Table I). Consequently, within the admissible velocity
range (i.e.v ≤ 7 m.s−1), hazardous situations from the
stability point of view may be encountered (theLLT can
reach a significant value when performing the desired
circles, depending on the grip conditions). Nevertheless,
the maximum steering angleδmax may also be attained at
high speed, so this path may then no longer be achievable.

Fig. 8. Reference trajectory manually recorded

B. Results with a medium desired speed vd = 4m.s−1

(14.4km.h−1)

The performances of the proposed algorithms were first
investigated with a medium target speedvd = 4m.s−1. At such
a velocity, perturbations are not very significant and the chosen
reference path can be completed with respect to the steering
actuator limitations.

1) Motion control results: First, the velocity control for
robot stability was turned off. The performance of the path
tracking control law (22) is indicated in Fig. 9 by a solid red
line. It can be noticed that despite the modification in grip
conditions (from asphalt (up to curvilinear abscissa 90m) to
grass (beyond 90m)) and the quick variations in reference path
curvature, the maximum recorded error is equal to 0.5m: track-
ing error satisfactorily remains around zero (robot position is
superposed with the reference path) within a limited area, even
during fast curvature variations.

For the sake of comparison, the result obtained with a
classic predictive controller neglecting sliding (which can be
obtained by setting(α̂r , α̂ f ) = (0,0) in control law (22)) is
shown by a black dotted line in Fig. 9. Larger deviations
(exceeding 1m) can be noticed, and moreover the tracking
error is not centered around zero during curves. This clearly
demonstrates the contribution of the grip condition and sideslip
angle estimation.

The only significant errors recorded when using control
law (22) are overshoots encountered at the beginning/end of
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Fig. 9. Tracking error at 4m.s−1

the two circles (i.e at curvilinear abscissas 38m, 65m, 95m
and 135m). These can be explained by a slight error in the
identification of the steering actuator settling time (usedin the
predictive part of the path tracking control law). However,they
are mainly due to the settling time of the sideslip angle ob-
server, as can be verified from the real-time cornering stiffness
estimation shown in Fig. 10. It can first be seen that during
both circles, cornering stiffness adaptation is satisfactory: Cf

andCr converge on 14000N.rad−1 when the robot moves on
asphalt and beyond 16000N.rad−1 when it moves on grass.
In contrast, adaptation is quite limited during straight line
sections, since the observer is not sufficiently excited (see
Section III). This is particularly true before the first curve (i.e.
before curvilinear abscissa 38m): during this part, estimated
cornering stiffnesses stay around initial values, manually set
to 5000N.rad−1 to initialize the algorithm. This arbitrary value
corresponds to low grip conditions and is not representative
of the actual ground contact. As soon as the robot enters
the curve, the observer is excited and cornering stiffnesses
converge to relevant values (from curvilinear abscissas 38m
to 62m). The convergence time then explains the overshoot
recorded in Fig. 9 at the beginning of the first circle.
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Fig. 10. Estimated cornering stiffnesses

2) Stability control results:Whenvd = 4m.s−1, the rollover
risk is not high. Consequently, in order to investigate the
capabilities of the LLT limitation algorithm introduced in
Section IV-B, the thresholdLLTlimit was tuned very low :
LLTlimit = 0.3. The velocity applied during the third path
tracking experiment was then the minimum chosen between
vd = 4m.s−1 andvmax, computed according to (34). The results
comparing the LLT recorded during the first path tracking ex-
periment (with sliding estimation but without LLT limitation)
and during this third experiment (with sliding estimation and

LLT limitation) are shown at the top of Fig. 11 (respectively
by a black plain line and a red dotted line).
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Fig. 11. Speed limitation and corresponding LLT recorded with a target
velocity of 4m.s−1

It can first be noticed that, during both circles, the LLT
is satisfactorily limited to the chosen value±0.3 when LLT
limitation is active, while−0.5 and+0.4 are recorded during
the first and the second circle respectively if LLT limita-
tion is inactive. The robot velocities recorded during both
experiments are shown at the bottom of Fig. 11: in the first
experiment (without LLT limitation), robot velocity is kept
aroundvd = 4m.s−1 as expected (blue dotted line). In contrast,
in the third experiment, the computedvmax value (red solid
line) is actually applied in order to limit LLT to the desired
threshold±0.3: the robot velocity is decreased to 3m.s−1

during the first circle (on asphalt), and to a slightly higher
value 3.5m.s−1 during the second one (on grass). Since the
circle radii are the same, the difference in the computed
maximum velocities, leading to the same LLT value, is only
due to variations in grip conditions. One can also note the
noise difference in the recorded signals between the two kinds
of terrain.

Finally, it can be verified that the velocity control law
imposing a limitation on LLT values, and therefore ensuring
robot stability, does not impair path tracking accuracy: tracking
error recorded when LLT limitation is inactive (plain red line)
and active (black dotted line) are compared in Fig. 12.
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Fig. 12. Comparison of tracking errors when LLT is active/inactive

It can be seen that both errors are quite similar: the tracking
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accuracy is even slightly higher and the error signal oscillates
less when LLT limitation is active, since the velocity is lower,
and consequently the perturbations due to shocks and steering
actuator settling time are less significant.

C. Results at maximum admissible velocity

1) Motion control without LLT limitation:The satisfactory
results reported in Section V-B1 were confirmed in several
other experiments, with different trajectories and on different
kinds of ground (see for instance [13]): tracking accuracy can
actually be preserved, even at higher speed, provided that the
steering actuator limitations are not reached. For the reference
path shown in Fig. 8, actuator limitations are met when the
robot’s target velocity isvd = 6m.s−1: at that speed, the sliding
effects are quite significant and impose large values for the
steering angle, exceedingδmax, so that this trajectory is no
longer performable. This is illustrated in Fig. 13, where the
tracking error is shown at the top of the figure, while target
and measured steering angles are compared at the bottom.
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Fig. 13. Tracking error and steering angle during tracking at 6m.s−1

It can be noticed that the steering angle values sent to
the actuator exceed±δmax (i.e. ±20◦) around curvilinear
abscissas 38m and 95m, i.e. when the robot enters the circles.
Of course, tracking accuracy is then diminished: the first
steering saturation occurring at the entrance to the first circle
generates an overshoot, but the tracking error then converges
on zero. In contrast, at the entrance to the second circle,
some oscillations are recorded, since the target steering angle
values are larger. With respect to robot steering capabilities,
this path with its associated grip conditions is not attainable
at 6m.s−1, and therefore discussions on tracking performances
would have here no meaning. Such an experiment is however
quite interesting in order to investigate further the capabilities
of the stability control law.

2) Stability control: The computed LLT recorded during
this experiment is shown by a plain black line at the top
of Fig. 14 and the corresponding measured velocity (roughly
maintained aroundvd = 6m.s−1) is shown by a blue dotted
line at the bottom of the same figure. It can be noticed that
the critical valueLLT = 1 is reached during the second circle,

at curvilinear abscissas 100m and 128m: at these instants, two
wheels of one side of the robot lift off, so that the robot is
very close to rollover; its stability is critical.
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Fig. 14. Speed limitation and corresponding LLT recorded with a target
velocity of 6m.s−1

In order to investigate the performances and the benefits of
the proposed stability control law, the same path tracking ex-
periment was finally carried out with LLT limitation turned on,
the thresholdLLTlimit set to 0.4, and the prediction horizon̄H
set to 0.8s (i.e. equal to the steering actuator settling time). The
LLT recorded during this last test is indicated by a red dotted
line in Fig. 14. It can be noticed that the LLT is satisfactorily
stabilized around the target values±0.4 during each circular
part of the reference trajectory, rather than increasing tohigh
and dangerous values when the stability control law is not used
(stabilized around−0.9 during the first circle and oscillating
between 0.6 and 1 during the second). Some overshoots can
nevertheless be recorded when the reference path curvature
varies quickly (beginning/end of circles at curvilinear abscissas
38m, 65m and 95m). These are mainly due to the settling
time of the motors, as can be observed at the bottom of
Fig. 14: the actual robot velocity (black dotted line) does
not instantaneously reach the target velocity (solid red line),
and such a delay in the actual velocity directly impacts LLT
behavior. The LLT reaches−0.6 and 0.6 when the robot
enters the first and the second circles respectively (curvilinear
abscissas 38mand 95m), before converging on the target values
±0.4.

The general principle of the stability control law is clearly
illustrated in Fig. 14. During the straight sections of the
reference path (before 38m, between curvilinear abscissas 65m
and 95m, and after 134m), the robot goes almost straight, so
its velocity can safely be increased up tovd = 6m.s−1. The
velocity control input is however not constantly equal tovd,
since in order to reject sliding effects the steering angle value
is not always close to zero, such that the computed valuevmax

may then be inferior tovd. In contrast, during the circular parts
of the reference path, the robot’s velocity is reduced (to 5m.s−1

and 4m.s−1 in the first and second circles, respectively) so that
the LLT is limited to LLTlimit . It can be noticed that limiting
the speed to 4m.s−1 in the second circle corresponds exactly to
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the conditions of the first experiment (see Section V-B1): when
vd = 4m.s−1 and LLT limitation is inactive, the LLT reaches
the value 0.4. If LLT limitation is active andLLTlim = 0.4,
the predictive control strategy then leads tovmax= 4m.s−1, as
expected.

VI. CONCLUSION

This paper proposes a path tracking approach for fast off-
road mobile robots, ensuring both path tracking accuracy
and robot stability. This is achieved via an algorithm acting
independently on the two control variables of the robot:
steering angle for motion control and robot velocity to limit
rollover risk (Lateral Load Transfer limitation). Via a grip
condition observer, the proposed approach accounts for sliding
effects, which impact the robot’s dynamics for both motion
and stability control. Moreover, Predictive Functional Control
is used to compensate for steering actuator delays (generating
overshoots) and to anticipate rollover risk. Such a control
strategy ensures high-accuracy path tracking and limits Lateral
Load Transfer, whatever the shape of the trajectory and
the ground conditions. These capabilities were investigated
through full-scale experiments, on a trajectory covering differ-
ent ground conditions and leading to hazardous situations at
attainable velocities. This shows the efficiency of the proposed
developments in different conditions with a limited numberof
sensors.

As was pointed out in the modeling section, the approach
is currently limited to a flat terrain, since an estimation of
actual ground inclination is not yet available. Nevertheless,
theoretical work introducing a bank angle is being developed,
but only tested in simulation at present, since a measurement of
this variable is required. Therefore, this new work is focused
on the real-time estimation of this variable by using all the
axes available in an IMU (only the yaw rate is considered in
the present paper).

The influence of steering actuator characteristics has also
been highlighted in the present work. However, any constraint
on an actuator or on robot capabilities also has an influence
on tracking accuracy: for instance, settling times or inertial
effects are parameters that can make a path recorded at 1m.s−1

(or computed from a map) unattainable at higher speeds. As
a result, the extension of the speed limitation algorithm in
order to ensure path achievability is under investigation.More
precisely, the aim is to develop a second predictive algorithm
to derive the maximum velocity leading to the maximum
steering angle or to a robot spin situation. Such developments
will ensure robot stability, not only from the rollover point of
view, but also as regards dynamics.
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