

Modeling Alert Message Dissemination via Multi-Channel Electronic Communication Systems

Michael Klafft
Fraunhofer FOKUS and FOM University of Applied Sciences
Michael.Klafft@fokus.fraunhofer.de

Agenda

- Previous Research
- Empirical study
- An approach to model alert dissemination
- Conclusions

Motivation and Research Questions

- In Germany: reduced coverage of the siren-based alerting infrastructure after the end of the cold war
- Increasing difficulties to cover the "last mile" when alerting the population in case of disasters
- Availability of electronic alerting channels (e-mail, SMS, pagers) in addition to sirens
- → Multi channel alerting systems emerge
- → But: how efficient can such systems be?
 - → Do people notice alerts?
 - → Do they act as instructed?
- → How can alert message diffusion be modelled?

Previous research

- - Simulation-based approaches
 - USA
 - 1990-2000 (exclude "modern" communication channels)
 - Practical tests with experimental systems (single channel)
 - Netherlands: Cell broadcasting, SMS (e.g. Jagtman 2010)
 - Australia: automated fixed-line telephone calls (2006)

Gaps:

- No multi-channel real world system for the general population analyzed
- Existing studies do not cover Germany

Previous research

 Alert process chain (modified from Jagtman 2010, United Nations 2006)

Setting of the empirical studies

- Studies were conducted using the "KATWARN" alerting system
 - Alerting via SMS, E-Mail, pagers
 - Subscription based opt-in system (data protection laws!)
 - Role-based alerting (general public, first responders, etc.)
 - Composition of alert messages from text building blocks
 - Optional: free text messages
 - Operational in 5 German cities and 8 counties
 - August 2013: > 80,000 subscribers
 - Core technology also used in a weather-alert system with more than 500,000 subscribers

- Study conducted in Aurich county (rural coastal area in Northern Germany, close to the North Sea)
- 362 test users
 - Primarily first responders or multipliers (92%)
 - Almost all were registered for SMS alerts
 - 43 % additionally registered for e-mail-alerts
 - 2% were additionally alerted via pagers
 - Test alert was issued at a random point in time (within a time frame) by the regional emergency management authority
 - Immediate user-feedback required after noticing the alert

The test alert (E-Mail version) Aurich county Advance warning for authorities: Code REDserious drinking waterincident

ZIP code: 26736

valid from: immediately

until: Monday, August 24th, 2009, 22:00 CET

editing date: August 24th, 2009, 14:09 CET

Advance warning code RED serious drinking water incident Please contact the situation room. (Test alert)

Recommended protective measures:

Don't drink any tap water.

This message was sent by the emergency management agency of Aurich county.

For feedback and comments, please use info@katwarn-aurich.de

Question one: How many test users did receive the alert?

 Question two: When did recipients notice the alert? (alert sent at 14:09 CET)

Observations:

- Inter-personal effects / multiplication, e.g.:
- "I confirm that myself and 15 colleagues in the office received the alert"
- "Me and my wife received the alert"
- No confirmations received over night (between 23:00 and about 6:00 hours)
- Short-term alerting efficiency better than via TV and Radio (but slightly inferior to sirens)
- Caveat: Results only valid for daytime alerts in rural areas!

Modeling the alert message diffusion

- Direct alerting vs. multiplication effects
- The dissemination function for direct alerting shows a root type functional pattern

Derivation of the dissemination model:

- Derivation of the direct dissemination function from observed data
- Performing of a <u>least squares optimization on a general root</u>
 <u>type function</u> in order to model the time lag between sending the
 alert and noticing the alert by recipients
- Incorporation of multiplication effects: household size (as surveys indicate that alert recipients will inform family members)
- Incorporation of time: reduced efficiency for nighttime alerts

Modeling the alert message diffusion

Functional approximation: share of direct recipients having noticed the alert

Including multiplication effects

- Alert recipients will inform their family and neighbours
- No data available on the the number of neighbours, but data on household sizes are available (regional variations)
- Household sizes in OECD countries (source: OECD, 2009)

The (basic) model

Mathematical description

- Includes discount factor for nighttime alerts
- Includes a factor for opt-in (purchasing of equipment, registration...)

 $Share_{informed} = 0.099630036 * X^{0.36942018} * optin * hh * discount *100%$

Share_{informed}= share of the population which has directly received and noticed an alert

optin = share of the population typically opted in to the alerting system (if applicable)

x = time elapsed since the alert in minutes (can be used for up to 120 minutes)

hh= average household size in the alerting area

discount = reduced alert perception at nighttime. If alert takes place after 23:00 and before 7:00, set discount := 0,2, else set discount :=1

Open issues and next steps

- Incorporation of additional alert system types (e.g., sirens or alert systems for specific buildings)
- More precise modeling of multiplication effects required
- Validation of the approximation with additional tests (so far: 3 test alerts conducted)
- Analysis of regional behavioural patterns (big cities, foreign countries...)

Thank you for your attention!

This research was in part financed by the European Commission through the Opti-Alert project grant (Grant Agreement No. 261699). For more information on our project, visit www.opti-alert.eu

