

Impact of a Geomagnetic Storm on the GNSS-based Positioning Service CPOS

Knut Stanley Jacobsen Norwegian Mapping Authority

Credit for pictures and illustrations of space phenomena: NASA, NASA/SDO, ESA

Solar flares

Extremely powerful explosions on the Sun, driven by release of magnetic tension

PRE-FLARE

Subsurface flows relaxed

Flux tube twisted by subsurface flows

Flare goes off Plasma ejected

BUILD UP

FLARE

3 November 2011

3 November 2011 – X-class Solar Flare

CME

(modeled)

At around 20:27 UT, the sunspot AR1339 releases an X2-flare and launches a CME.

(=== an R3 radio blackout)

Effects of solar flares

- High-energy electromagnetic radiation (X-rays and gamma rays)
- Energetic particles (Protons at > 100 MeV)

Coronal Mass Ejections

Coronal Mass Ejections (CMEs) Giant clouds of plasma escaping from the Sun

03:36

05:18

Auroral oval Pretty lights in the sky

Auroral oval on a normal (quiet) day

During geomagnetic storms, Norway is in a «perfect» position (If you want to see aurora)

CPOS The positioning service of the NMA

Centimeter accuracy in real-time

CPOS is based on a nationwide network of GNSS receivers

Credit: Google Earth

Geomagnetic storm 24 October 2011

Overview of the event and its effects on CPOS

Planetary K-index

2011-10-24 22:05 UT

30

Amount of plasma in the ionosphere (TEC)

Effect of disturbances at ground level (ROTI)

Ionospheric disturbance level (ROTI)

5

3.74

2.5

1.24

CPOS Processing Status

2011-10-24 23:00 UT

30

15

0

Amount of plasma in the ionosphere (TEC)

Effect of disturbances at ground level (ROTI)

Ionospheric disturbance level (ROTI)

5

3.74

2.5

1.24

CPOS Processing Status

2011-10-24 23:30 UT

30

15

7.5

0

Amount of plasma in the ionosphere (TEC)

Effect of disturbances at ground level (ROTI)

Ionospheric disturbance level (ROTI)

5

3.74

2.5

1.24

CPOS Processing Status

2011-10-25 01:20 UT

ነና 10

30

15

0

Amount of plasma in the ionosphere (TEC)

Effect of disturbances at ground level (ROTI)

Ionospheric disturbance level (ROTI) 75 Latitude (degrees) 65 70 8

5

3.74

2.5

1.24

CPOS Processing Status

The ionospheric disturbances lasted for hours

GNSS monitor measures user experience

Position errors increased by more than 20 000 %

EGNOS performance was also affected

ECLAYR v5.2.3

ECLAYR v5.2.3 ced by ESSP SAS

98 97

> 99.6% > 99.0% > 97.5% > 95.0% > 90.0% > 75.0% > 50.0% > 20.0% > 10.0% < 10.0%

<figure>

ECLAYR v5.2

> ຊີ່ ບໍ່ ບໍ່ ບໍ່ ບໍ່ ຊີ່ ນີ້ ຊື່ ນີ້ ອີ່ LONGITUDE ECLAYR v5.23 Produced by ESSP 54S

http://www.kartverket.no/seSolstorm

2012-08-30 00:00:00 to 2012-08-30 08:59:59 Rate of TEC Index at ground

Forstyrrelser på bakken

Figuren viser hvilke områder på bakken som er påvirket av ionosfæreforstyrrelser (ionosfære). I disse områdene kan man forvente problemer med å gjøre GNSS-målinger (GNSS).

Fargeskalaen går fra blått til rødt, hvor blått er rolige forhold og rødt er store forstyrrelser. En ny figur produseres hvert 5. minutt. I figuren er det brukt UTC tid (<u>uTC</u>)

Real-time ionosphere monitoring service

An expanded ionosphere monitoring service will be available at ESAs space weather portal at a later date

Tidsserie for forstyrrelser på bakken

Figuren viser siste døgns ionosfæreaktivitet for tre regioner. Regionene er :

Sør-Norge: 57-62 grader nord (blå linje) Midt-Norge: 62-67 grader nord (grønn linje) Nord-Norge: 67-72 grader nord (rød linje)

En ny figur produseres hver time. I figuren er det brukt UTC tid ($\underline{\text{UTC}}$)

Skalaen er som følger:

- 0-1 TECU/min lav aktivitet
- 1-3 TECU/min moderat aktivitet
- 3-5 TECU/min høy aktivitet
- 5+ TECU/min meget høy aktivitet

Siden dette er en nyutviklet nettside, kan det være deler av tjenesten som ikke fungerer optimalt. Vi ønsker derfor tilbakemeldinger på alle aspekter ved tjenesten. Kontakt: <u>satref@kartverket.no</u>

Questions?