The Impact of Space Weather on the Electric Power Grid

D.H. Boteler

Canadian Space Weather Forecast Centre

Heliophysics Summer School, June 2012

Hazard Assessment and Real-Time Simulation of Geomagnetically Induced Currents

D.H. Boteler

Geomagnetic Laboratory, Natural Resources Canada

Outline

Geomagnetic Induction

$E \neq dB/dt$

Induced currents create magnetic fields

Self-consistent solution where induced currents tend to cancel inducing magnetic field

 $\omega\mu\sigma$

Skin depth
$$\delta = 1$$

Earth Conductivity Structure

Earth Structure

Rock Resistivities

Earth Models

Examples of 1-D Conductivity Models

Calculate Earth Response

Surface

(J ₁	d ₁
(J 2	d ₂
(J ₃	d ₃
(J ₄	d ₄
(J 5	d ₅
(J ₆	d ₆
(J ₇	d ↓∞

- μ permeability
- ω frequency
- Z_n impedance in layer n
- $\sigma_n \text{conductivity layer n}$
- d_n depth of layer n
- k_n propagation constant for layer n

Recurrence Relation

$$Z_{n} = i\omega\mu \left(\frac{1 - r_{n}e^{-2k_{n}d_{n}}}{k_{n}(1 + r_{n}e^{-2k_{n}d_{n}})}\right)$$

$$r_{n} = \frac{1 - k_{n} \frac{Z_{n-1}}{i\omega\mu}}{1 + k_{n} \frac{Z_{n-1}}{i\omega\mu}} \qquad k_{n} = \sqrt{i\omega\mu\sigma_{n}}$$

Last layer:
$$Z_N = \frac{i\omega\mu}{k_N}$$

Electric Field Calculation

Electric Field Calculation (Plane Wave)

Modelling Process: Basic Network

1. Modelling Process: Mesh Impedance Method

Using Kirchoff's voltage law we can write equations for each loop

$$r_{01}i_{1} + r_{1}i_{1} + r_{12}(i_{1} - i_{2}) = e_{1}$$

$$r_{12}(i_{2} - i_{1}) + r_{2}i_{2} + r_{23}(i_{2} - i_{3}) = e_{2}$$

$$r_{23}(i_{3} - i_{2}) + r_{3}i_{3} + r_{34}(i_{3} - i_{4}) = e_{3}$$

$$r_{34}(i_{4} - i_{3}) + r_{4}i_{4} + r_{45}i_{4} = e_{4}$$

1. Modelling Process: Mesh Impedance Method

Collecting terms in $i_1 i_2$ etc gives

$$(r_{01} + r_1 + r_{12})i_1 - r_{12}i_2 = e_1$$

- $r_{12}i_1 + (r_{12} + r_2 + r_{23})i_2 - r_{23}i_3 = e_2$
- $r_{23}i_2 + (r_{23} + r_3 + r_{34})i_3 - r_{34}i_4 = e_3$
- $r_{34}i_3 + (r_{34} + r_4 + r_{45})i_4 = e_4$

$$\begin{bmatrix} r_{01} + r_1 + r_{12} & -r_{12} & -r_{23} & 0 \\ -r_{12} & r_{12} + r_2 + r_{23} & 0 & 0 \\ 0 & -r_{23} & r_{23} + r_3 + r_{34} & -r_{34} \\ 0 & 0 & -r_{34} & r_{34} + r_4 + r_{45} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ i_3 \\ i_4 \end{bmatrix}$$

1. Modelling Process: Mesh Impedance Method

Thus the equations can be written in matrix form

[Z][I] = [E]

Matrix inversion then gives the expression for the currents

$$\left[I\right] = \left[Z\right]^{-1} \left[E\right]$$

General Modelling Methods

• Mesh Impedance Matrix Method

• Nodal Admittance Matrix Method

• Lehtinen-Pirjola Method

Mesh Impedance Matrix Method

Nodal Admittance Matrix Method

GIC flows from one edge of the network to the other

GIC flows past substations in the middle of the network

GIC for Northward Electric Field

GIC for Eastward Electric Field

Directional Sensitivity

Impacts on Power System

Spikey waveform \rightarrow harmonics

Harmonics cause misoperation of protective relays

Increased magnetising current \rightarrow increased reactive power consumption

Lack of reactive power causes voltage collapse

Increased Reactive Power Requirements

Transformer Overheating

Conclusions

 Calculation of GIC needs knowledge of geomagnetic disturbance, Earth conductivity, network impedances

- Simulation done assuming: uniform magnetic disturbance
 1-D Earth conductivity model resistive network
- Simulation use off-line for hazard assessment and in real-time for system monitoring

