
 

 

 
 
 
 

 

MODELING CRITICAL INFRASTRUCTURE 
INTERDEPENDENCIES 

CHOOSING A MODELING TECHNIQUE 
 

Finn Olav Sveen1, Jose. M. Torres1, Jose M. Sarriegi1, Jose J. Gonzalez2, 
Adriana M. Ortiz1 

1Tecnun (University of Navarra) 
2University of Agder and NISlab (Gjøvik University College) 

 

Abstract 
Modern critical infrastructures (CIs) are becoming increasingly more interdependent, locally, 
regionally and globally, constituting a system of systems. The nature of large scale, cross-
border crises in these systems of systems is not easily understood. Multiple actors, multiple 
legal environments, time delays, cascading effects and unintended consequences of well 
meant actions create a complexity that overwhelms. Researchers have therefore turned to 
computer modeling and simulation to understand such systems. We present an overview of 
some of the most common modeling and simulation techniques used to assess vulnerabilities 
and their consequences arising from CI interdependencies. This includes Input-Output 
models, models based on mathematical Network theory, Agent-Based models and System 
Dynamics models. We find that the modeling techniques offer different advantages and 
disadvantages and in general they are all useful to understand different aspects of the 
problem. A crucial question is whether to model the system of systems using a bottom-up or a 
top-down approach. 

Keywords: Modeling and Simulation, Critical Infrastructure, System Dynamics, Agent-
Based, Networks, Input-Output models 

Introduction 
The recent EU 7th framework programme ICT and Security Joint Call FP7-ICT-SEC-2007-1, 
focused on cross-border security crises in Europe. It is possible to conceive of a wide range of 
such scenarios affecting critical infrastructures (CIs). The unfolding of a particular crisis 
depends on its origin, severity, involved parties and a host of other factors. Traditional cross 
border crises involve natural disasters or military conflict between nations. Individual 
countries were more or less self sufficient. Today that is no longer true. For example: The EU 
depends on energy supplies that are mostly not produced within the EU.  

“One of the most frequently identified shortfalls in knowledge related to enhancing CI protection 
capabilities is the incomplete understanding of interdependencies between infrastructures” 
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(Mussington 2002). Consequently, failing to understand these interdependencies and their dynamics 
will result in ineffective response and poor coordination between decision makers and agencies 
responsible for rescue, recovery and restoration (Pederson et al. 2006). It is not only the incomplete 
understanding that is problematic, but also emergent interdependencies owing to fast CI 
interconnection growth rate (Likar, Fatur, and Krizaj 2001). As CIs do not exist in isolation of one 
another, we need a “system of systems” perspective to analyse them. Furthermore, owing to the last 
decade’s trend of deregulation, these CI systems are no longer centrally controlled. 

New technologies and evolving operational modes generate unfamiliar risks, that have 
“emergent character”: they derive from interdependencies and circumstances that have not 
been anticipated by the designers and the users of CIs. I.e., they are risks that are shaped in 
novel ways by the different man-technology-organization-relationships (Schneier 2000). 

When we lack experience we must turn to other methods to predict and prepare for crises and 
their possible consequences. One way is through computer simulation. To achieve success the 
simulation environment must be able to realistically describe the strategic environment of a 
cross-border crisis. Furthermore, crises involve transient, dynamic phenomena, which may 
have a significant impact on the unfolding of the crisis, and must be represented. 

Another issue is the unpredictable nature of crises. Although, one may know broadly what 
kind of crises one can expect, one does not know exactly where they will strike or how they 
will unfold. The number of potential crisis scenarios is so great that to create specific 
simulation models of all of them is unfeasible. Furthermore, the underlying CI systems are 
always changing; a perfect model of the system today would be obsolete tomorrow. Hence, 
point prediction of specific real world variables is an unrealistic, unfruitful approach. 
However, by focusing on the qualitative relationships of interconnected system variables it is 
possible to train crisis managers to handle a wide range of different scenarios.  

Over the years a variety of simulation paradigms have been developed and used to study 
strategic problems. This paper has two purposes: 1) To show some of the applications of 
simulation modelling to interdependent CI. 2) To assess the applicability of four modelling 
paradigms to crises in interdependent CI. The modelling paradigms include Network models, 
Input-Output (I-O) models, Agent-Based (A-B) models and System Dynamics (SD) models. 

Common Modelling Techniques 

Network Models and Derivatives 

These models build on mathematical network theory. CI is represented as a network of 
vertices (nodes) interconnected by edges (links). 

Albert et al. (2000) investigated the Internet and found that it is a scale-free graph. In scale-free 
graphs, rather than all the nodes having the approximate same number of connections, only a 
few of the nodes are central communication hubs, other nodes having few connections. These 
kinds of networks exhibit strong robustness in the face of random errors, as the probability of 
selecting a highly connected node is low in the face of random error. However, scale-free 
graphs are vulnerable to targeted attacks on key nodes, i.e., nodes which are highly connected 
with many other nodes. Such attacks, if successful, may lead to catastrophic failure. 

Grubesic and Murray (2006) presented a linear integer programming approach to evaluate two 
North-American Internet backbones, WorldCom and ICG. Both of these extensive networks 
cover most of the United States. They are considered to be hub-and-spoke networks where a 
selected number of vital nodes carry most of the connections for the system and are often 
constructed because of the prohibitive cost of truly redundant network structures. These 
networks have properties approximating those of scale-free networks. Analysis indicates that 
removal of only a few key nodes in the system would severely degrade communications 
capability. E.g., in the ICG network, the removal of only three vital nodes, Cleveland, Newark 



 

 

and Dallas, would disconnect the whole Mid-South and the ICG network would be splintered 
into sub-graphs (sub-networks). Removal of one more vital node led to cascading failures. 

Holmgren (2006) studied the North-American western states power grid and the Nordic 
power grid. He found that the networks exhibit small-world phenomena and have exponential 
degree distributions like random graphs. They are thus not exactly scale-free graphs but 
exhibit many of the same properties. The power grid networks fragmented considerably faster 
when vertices were removed deliberately rather than randomly. The results indicate that the 
Nordic power grid is slightly more vulnerable than the North-American one. However, both 
disintegrated faster than the theoretical random and scale-free graphs used for comparison. 

Svendsen and Wolthusen (2007) present a connectivity model that can be used to represent 
and investigate interdependent CIs. The model is able to account for buffering, e.g. storage of 
petroleum in a tank, which would lessen the dependency on continuous supply. A small 
interconnected network of electricity, natural gas and ICT is examined. Although the network 
is a theoretical example it is based on real world counterparts. The model shows how error 
propagates through the system of systems as nodes are removed, significantly degrading the 
performance of all three infrastructures. 

Input-Output Models 

The original static Input-Output model was proposed by W. Leontief (1951; 1951), a work for 
which he won the Nobel Prize in economics in 1973. His model and derivatives have since 
been used extensively. I-O models build on the premise that output from one industry sector is 
input for one or more others and that there is equilibrium conditions between these. I-O 
models consider the structure of the economy and the flow of resources between the different 
sectors. I-O models can therefore produce a detailed picture of the economy. 

Moore et al. (2006) used a spatial Input-Output model, SCPM2 to study the economic impacts 
of infrastructure failure in Los Angeles in Southern California. The model is a development of 
SCPM1, which is a combination of a traditional Input-Output model with a Garin-Lowry 
model. Travel and freight flows throughout the region are modelled. A scenario assuming a 
one month power loss affecting 10% of the cities in the region was simulated. They found that 
“The impacts that infrastructure failures impose on the urban economy are (a) widespread, but 
(b) do not seem to include adverse income distribution effects.” 

The Inoperability Input-Output (IIM) model was proposed by Santos and Haimes (2004). The 
concept of inoperability is defined as the “percent of output reduced from the ideal output” 
(Lian and Haimes 2006). Inoperability is triggered by demand reduction. IIM is a static model 
and Lian and Haimes propose a dynamic version of the model, the DIIM, which is then used 
to assess the inoperability and economic cost caused by hypothetical terrorist attacks. A 
limitation of both the IIM and DIIM is that they deal only with economic loss (2006). 

Agent-Based Models 

A-B modelling is a simulation methodology coming from the field of complexity science 
(Schieritz and Gröbler, 2002). A-B systems are comprised of multiple idiosyncratic agents 
and are useful to study complex systems. A-B models represent complex system behavior as 
consequences of local interactions between agents and their environment. This approach is 
suitable to study CI as there are infrastructures that interact with their users and other 
networks. Amin (2001) states that: “The relationships and interdependencies are too complex 
for conventional mathematical theories and control methods. Infrastructures that interact with 
their users and other networks (for example, an automatic switching system for telephone 
calls) create additional complexity because the interaction of their elements further increases 
the number of possible outcomes.” Because of this he proposes A-B modelling as a suitable 
technique to study interdependent CIs. Amin also identifies cascading failure as the main 
vulnerability in CI networks. 



 

 

The main benefits of using A-B models are the possibility to represent heterogeneous agents, 
capture emerging behaviour and create a space where the agents interact according to 
distance. (Bonabeau 2002; Borshchev and Filippov 2004). Borshchev and Filippov (2004) 
indicate that another advantage is that A-B provides for construction of models in the absence 
of knowledge about global interdependencies.  

To construct an A-B model it is necessary to specify three main types of elements; agents, 
rules and the environment. The agents are people or entities of the artificial societies. The 
environment is the framework or abstract space where the agents can interact, and the rules 
are behaviour patterns for the agents and the environment. These rules can take the 
relationship forms of agent-environment, environment-environment and agent-agent. An 
insight of A-B models is that complex behaviour can arise from quite simple rules. Behaviour 
is said to be emergent, i.e. it arises endogenously and there is an element of surprise to the 
behaviour. As opposed to traditional economic analyses, A-B models do not focus on a 
system’s stable state, its equilibrium. Rather, they focus on the time period preceding 
equilibrium, which many real systems is unlikely to reach. The advent of object oriented 
programming and high performance computers have made A-B modelling and simulation 
feasible. 

A-B models should be used when the interactions among agents are complex; nonlinear, 
discontinuous or discrete, when the population is heterogeneous or each individual is 
potentially different; when its localization in the space is key in the problem; or when the 
agents exhibit complex behaviours including learning or adaptation. 

Aspen is a Monte Carlo simulation of the US economy, with agents representing various 
segments, such as households, banks, industries and the Federal Reserve (Barton et al. 2000). 
The simulator was developed by Sandia National Laboratories in the US. Aspen-EE builds on 
the Aspen model, but it has been extended with new agents to include interdependencies in 
electrical infrastructure. These include among others: producers of electricity, market 
structures that control the production of electricity and a supplier of electricity utility 
requirements.  

The Idaho National Engineering and Environment laboratory (INEEL) also developed A-B 
simulation models of CI (Dudenhoffer, Permann, and Sussman 2002). The efforts of INEEL 
are directed towards modelling multiple infrastructures centred around a single facility and 
the functional capabilities therein. An initial study was made of the Idaho Nuclear 
Technology and Engineering Center. 

Panzieri et al. (2004) developed CISIA (CI Simulation by Interdependent Agents). One of the 
key problems in simulating the interdependence of CI is the vast amounts of numerical data 
needed. “While it is relatively easy to obtain, at least via expert interviews, qualitative 
information on them, it is a hard challenge to discover quantitative and precise information.” 
To overcome this problem Panzieri et al. adopt the use of fuzzy logic. CISIA is capable of 
simulating infrastructure interdependencies on a quite detailed level. In a simple proof of 
concept case study they model the power infrastructure, air-conditioning and information 
infrastructure of the university campus of one of the authors. 

Balducelli et al. (2005) created a model that simulates the effects of a power outage on 
hospital staff and patient arrival. Staff and patients have to take the railway to get to work. 
The interdependence between the power and transportation infrastructure means that a power 
outage will have consequences for staff arrival and may create problems at the hospital. 
However, not everyone travelling to the hospital will react in the same way. For example, 
students may choose to skip some lectures and go home instead. Balducelli et al., like Panzieri 
et al. adopt fuzzy logic to overcome this problem. The model is able to show the effects and 
duration of disturbances. 

Tolone et al. (2004) present a hybrid model that couples A-B modelling with behavioural 
models and Geographic Information Systems and Technology (GI S& T). The model can 



 

 

simulate areas as small as just a few city blocks or large models on the order of hundreds of 
square miles. The model is capable of showing the geographical extent of propagating 
failures. An example simulation shows how a relatively minor loss of parts of the electrical 
power infrastructure caused a more widespread loss of functionality in the natural gas 
distribution network. 

System Dynamics Models 

System Dynamics (SD) has been heavily shaped by the Human Sciences and is used to study 
complex social systems. Its record proves that SD is appropriate to study any kind of 
complex, non-linear dynamic system, even pure technological systems. But one of its main 
advantages is its ability to effectively model socio-technical systems, which CIs certainly 
belong to; they consist of human, organizational and technological parts. The philosophical 
stance behind SD models is that complex systems are in essence feedback systems. That is, 
closed-loop relationships are ubiquitous in those systems: X affects Y, which in turn, directly 
or indirectly, affects X. Much of the mathematical foundation for modelling such systems 
comes from control theory and can be traced back to Norbert Wiener’s foundations of 
cybernetics. Differential or integral equations are used to specify the mathematical 
relationships between variables. Since non-linear equations often are too complex to solve 
analytically it is necessary to use a computer to simulate these systems. 

SD is used when the individual properties are not decisive and high-level aggregation is desired 
or required for management purposes. This is typically the case for management strategies and 
long-term planning (“long-term” being a relative concept in relation to the system’s lifecycle). 
The objects being modelled (human resources, events, processes, etc) are aggregated and they 
are represented as stocks that change through inflows and outflows. The flows are in turn 
influenced by information arising from the dynamics of the system (the stocks, flows and 
management interventions). SD models assume the endogenous posture: The causal structure of 
the system is responsible for its dynamic behaviour. SD models capture the propagation of 
causes and effects in terms of reinforcing and balancing feedback. The SD method accounts for 
time delay, nonlinearity and recognizes that crucial aspects are often “soft” – motivation, 
reputation, etc – and must be present in the model despite their fuzzy nature, since its omission 
would make the model useless. A distinctive feature of SD models is their ability to capture 
unintended side-effects of interventions and to help identify policies to minimize the impact of 
unintended repercussions. This is crucial, since experience teaches that many strategies that 
initially seem to work often have disastrous unintended long-term consequences (Dörner 1989, 
1997; Forrester 1968; Maani and Cavana 2000; Richardson and Pugh 1981; Sterman 2000). 

Beyeler et al. (2004) model the dependencies of port operations on telecommunications, 
electricity and transportation. The SD model used to simulate port operations relies on a 
discrete-event simulation model called N-SMART to provide input to the telecommunication 
part of the model. E.g., to simulate effects such as call blocking. Both models have been 
developed as a part of the US NISAC (National Infrastructure Simulation and Analysis 
Center) initiative. The port model is able to show how a three week interruption and recovery 
of telecommunications caused a two month disruption to port operations. The model was also 
able to show the increased cost per container caused by e.g., increased ship idle time. 

The CIP / DSS (CI Protection / Decision Support System) project at Argonne, Los Alamos 
and Sandia national laboratories has developed a risk informed decision support system 
(Conrad et al. 2006). The system has been implemented as a SD model in the software 
package Vensim. The CIP / DSS Metropolitan Model is able to simulate the impact of 
disturbances in a wide variety of sectors in a metropolitan area. Conrad et al. (2006) give an 
example of the impact of a power blackout on telecommunications and emergency services. 
Today, most homes have wired phones which continue to function during a blackout. 
Consequently, there is little cascading failure and adverse effects on emergency services. This 
is because wired phones are powered through the phone line from the telephone provider’s 
headquarters, where they have emergency generators. More and more people are switching to 



 

 

mobile phones and no longer have wired access, and consequently, can no longer call 911. 
Cell towers only have batteries as backup and they typically last for only four hours. The 
simulation indicated that there would be increased deaths and costs in such a future scenario. 
Dauelsberg and Outkin (2005) also give example runs of the model. They investigate different 
policies under an infectious disease outbreak.  

Pasqualini et al (2006) present a model of a potable water distribution system (PWDS). It is 
also part of the CIP / DSS suite of models. The model addresses the effects of contaminated 
water and recovery procedures in an area. On interdependencies Pasqualini et al. writes: 
“There are a number of interdependencies between the potable water infrastructure and other 
infrastructures. The PWDS model is coupled with other infrastructure such as metropolitan 
energy, transportation, and economic. For example, the ability to repair a damaged water 
system depends on the availability of transportation, energy, and labour force; the treated 
process also depends on the availability of energy. In the case of a scenario the 
interdependency between PWDS and public health also needs to be considered….” 

Discussion 

Purpose of the Modelling Effort 

As the previous section shows the four modelling paradigms discussed in this paper have all 
been applied to CI problems at various levels. While some have modelled individual 
institutions others have modelled whole economies. In many cases these models overlap and 
it is not a given which modelling paradigm one should choose for a given problem. 

Before we go on it is appropriate to think about the meaning of a model. A model is always a 
simplification of reality (Sterman 2000, p. 89-90). When we build models we do our best to 
include the most important aspects, but there will always be something that must be left out. If 
not the model would be huge and unmanageable, and therefore lose its value as a model that 
can help us make sense of a complex reality. Different paradigms make different omissions; 
hence no modelling paradigm is suited for every purpose. Below we discuss some aspects of 
modelling and how they relate to critical infrastructures and training of crisis managers. We 
start with the different paradigms ability to handle dynamic phenomena. 

Traditional Network models fail in this regard. They only show what the network would be if 
a node is added or removed. They are not able to represent the transition from one state to the 
other. Although network analysis is very useful in building robust CI networks (or for bad 
guys, in choosing the attack target), it is not able to represent the transition from non-crisis to 
crisis to end-of-crisis. The model by Svendsen and Wolthusen (2007) is a departure in this 
regard. Their model is able to account for, e.g., buffering, giving it some ability to handle 
transient phenomena. Another downside of Network models is that they are very data 
intensive. You need to know how every node is connected to every other node. This is also a 
problem with Input-Output models. 

In addition to being data intensive, further criticism has been directed at Input-Output models 
(Vargas et al. 1999). 1) Prices and production means are fixed, and 2) production is demand 
driven, i.e., it assumes that all necessary input to satisfy needs for production will be supplied 
once demand is established (Miller and Blair 1985). The IIM model shares these assumptions 
and the impact of a disruptive event is a reduction in demand which is treated as an 
exogenous event (Santos and Haimes 2004). Kujawski (2006) states that: “These assumptions 
are not realistic for disruptive events. Disruptive events damage or destroy production 
facilities, and therefore they may reduce the output capacity below the demand and lead to a 
shift in production and price changes.” Kujawski (2006) proposes that to study disruptions to 
CI one must consider the dynamics of the system. 

Dauelsberg and Outkin (2005) compare SD simulations with that of economic Input-Output 
models. “Thus the goal is to investigate and understand the non-equilibrium, non-linear 
dynamics of the system. Our SD models with multiple feedback structures are well suited for 



 

 

such a task. This is a point of departure from the input-output (I/O) approaches where 
equilibrium conditions are implied. However, during a disruptive event there are no apparent 
reasons why the equilibrium, as it is normally defined in economics, should occur. In general 
the incidents that are modelled by this system are transient in nature, often lasting no longer 
than a few weeks. I/O models are most often calibrated to annual data and intend to capture 
permanent changes and long term trends, smoothing out short term dynamics.” Input-Output 
models therefore do not seem appropriate for modelling when the purpose is to understand the 
dynamics of the problem. However, I-O models would be appropriate if the goal is to see 
which sectors of the economy might be affected. “Given the limitations of the I-O based 
models, we conclude that they are more appropriate as a tool for guidelines to potential effects 
than for quantitative economic predictions.” (Kujawski 2006) 

A-B models are, as SD models, able to handle non-linear dynamics. Both A-B and SD models 
are causal models of the studied systems’ microstructure. The approach to modelling is 
somewhat different in each paradigm. SD models work on integral (or differential) equations 
that define causal structure. Although it is possible in SD to model individual entities, usually 
groups of entities are modelled. A-B models define agents who interact with each other 
according to each agent’s rule set. As such A-B models are a form of bottom-up modelling, 
while SD models usually choose a higher aggregation level and can therefore be considered 
top-down modelling. It must be noted that top-down and bottom-up are relative concepts. In 
an SD model the level of aggregation (or dis-aggregation) must be sufficient to reproduce the 
behaviour of the system under study, hence one might have to model the system quite detailed 
in some cases. However, the goal is to find the maximum level of aggregation possible. In A-
B modelling agents are not always individual persons, but can be e.g. households, individual 
companies and so on.  

In SD models feedback is explicitly represented, and a strength is that the system’s feedback 
structure can be easily visualized through diagramming techniques. A-B models also handle 
feedback, but instead of explicit representation it emerges based on the agents’ interactions. 
The ability of SD to explicitly represent feedback in diagrams give it an advantage 
presentation-wise, while being able to follow individual actors and their actions is an 
advantage of A-B. 

Both SD and A-B modelling paradigms stress the importance of bounded rationality, a feature 
which is important to understand socio-technical systems in crisis situations. No one has the 
full overview in a crisis. The information that forms the basis for managers’ decisions is 
usually incomplete and delayed. 

Validity 

So far, despite the philosophical difference between bottom-up and top-down, A-B and SD 
seems equally suited to handle the modelling task at hand. And we have also seen in the 
previous section that both modelling paradigms have been successfully applied to CI 
problems. What then is each paradigm’s approach to validation? After all, if the model is to 
be used to train crisis-managers it must be able to give a sufficient representation of reality. 
But, how do we determine whether that representation is sufficient? We can not say whether a 
model is true or false. The nature of modelling defeats such an attempt. As mentioned above 
something is always left out in a model. There is always a danger that what is left out is 
important. Verification, as we understand it, is the process of establishing whether all the 
important bits are in the model and validation makes sure that the model satisfies behaviour 
tests for the right reasons. The ultimate question is: Is the model useful (Forrester 1961), i.e. is 
it good enough for our purpose ? (Coyle and Exelby 2000) 

Although there are many aspects to model validation, it can principally be thought of as two 
main issues: 1) Behavioural validity and 2) structural validity. Behavioural validity is 
concerned with whether the model adequately reproduces the behaviour of the real system. 
This involves comparing historical data with the output of the model. It can be done in more 



 

 

or less sophisticated ways. However, in the case of cross-border crises in interdependent CI 
there is one major problem. Since the level of interconnections on a regional and global scale 
now has reached unprecedented levels there are few historical crises that can be used as data 
sources. Hence, statistical validation against historical data is largely inapplicable. Instead we 
must establish whether the produced behaviour makes sense. 

Structural validity is a prerequisite for behavioural validity. A model may reproduce the 
desired behaviour with an unrealistic structure. In the case of SD models, getting the model to 
reproduce the right behaviour is only a matter of adding enough terms to the integral 
equations (Forrester 1961, p 117). This goes for A-B models too. The reproduction of 
behaviour only shows that the decision rules in the model is sufficient to reproduce that 
behaviour, not that they are necessary (Epstein 1999), and, more importantly, whether it 
adequately approximates the system’s real structure. This is important because the goal is 
ultimately to find a better policy for how to handle crises. If the model structure is different 
from the real structure the normal behaviour might be the same, but the behaviour under a 
changed policy might be different. Both SD and A-B struggle with this issue. Establishing 
structural validity can be done in various ways but it must be rigorous and is thus time 
consuming. The greater the scope of the model and its level of detail, the more difficult it is to 
validate. We find no philosophical differences between the paradigms in this regard. 

The Model Building Process 

Most textbooks on modelling, whether it is SD or A-B, concentrate on the technical aspects of 
model building and interpretation of its result. However, modelling, as any other scientific 
activity, is inherently an iterative process. A model is built and tested against the real world. 
I.e. it is subjected to refutability.  If the model is found lacking a new model is developed 
based on new field data. As such the modelling oscillates between laboratory experiments 
(simulations) and data gathering in the field. Unfortunately there is no such thing as a 
standard model building process. Each new model that is to be built poses new challenges. At 
best we can say that there is a common framework. Both the A-B and SD paradigms are 
subject to this. Indeed any simulation model building paradigm suitable for the construction 
of causal models is subject to this iterative process. Philosophically there is no difference. 

Practitioners of SD have developed a Group Model Building (GMB) approach, which allows 
for rapid model development and increased stakeholder involvement in the modelling process 
(See e.g.Vennix 1996). The graphical notation of SD lends itself readily to collective model 
building. Building models in groups is especially an advantage in environments where 
knowledge about the problem is highly fragmented and dispersed between many different 
actors. We are not aware of similar model building approaches in other paradigms. 

Final Comments 

We can not say whether one paradigm is better than another paradigm in general, however for 
specific purposes some are better than others. If knowing what is impacted is important, but 
not how it is impacted, i.e. the dynamics of the crisis is not of interest, then Network and 
Input-Output models are suitable. SD and A-B models are both suited for handling the 
dynamics of a crisis. For purposes that require a strategic overview of the situation it makes 
sense to use SD, in part because its presentation tools are clearer than the tools currently 
available in A-B modelling. If it is important to understand how individual agents interact to 
form a larger macro-behaviour, A-B modelling is suitable. 
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