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ABSTRACT 
Fuzzy logic deals with uncertainty and imprecision, and is an efficient tool for 

problems where knowledge uncertainty may occur. Such situations arise frequently in a 
process safety analysis of different industrial processes. The lack of detailed data on failure 
rates, uncertainties in available data, imprecision and vagueness and other deficiency in a 
safety analysis may lead to uncertainty in results, thus producing an underestimated or 
overestimated process risk index. 

This paper explores the application of the fuzzy sets theory for risk assessment 
basically used in all process safety analysis.  The traditional part and fuzzy part of process risk 
assessment were selected and the application of Fuzzy Logic System (FLS) was made 
applying either the fuzzy rules or the fuzzy arithmetic. Using FLS concept, the consequence 
analysis, important for emergency management, is presented and the BLEVE calculation 
illustrates the effect of fuzzy arithmetic application. The preliminary tests confirmed that the 
final results on the range of distance to radiation threshold values are more precisely and 
realistic determined. 
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1. Introduction 
 
Chemical process industry plays a vital role in daily life although its public image is rather 
negative. Major accidents, when they do happen, result in numerous losses resulting in bad 
publicity and stricter regulations, e.g. Seveso Directives. However, several current 
developments point to a significantly brighter future. These developments relate to practising 
inherently safer design, and application of the more reliable safety systems. All those 
developments must be assessing in terms of the process risk. Such an exercises called Process 
Safety Analysis (PSA) enable decisions concerning the selection of appropriate technical and 
organization safety measures in order to meet risk acceptance criteria [1].  
Traditional PSA requires numbers of input data for the models used for probability 
assessment as well for consequences analysis. However, the variability of data and 
assumptions used for those mathematical models form uncertainty and complexity. In such 
way, risk analysis results of PSA may not be considered as exact, precise and creditable 
output data. Therefore, it is important to look for the methods that may reduce the level of 



uncertainty in the description of process hazard risks. One of the promising methods for 
reduction of the uncertainties in process safety assessment seems to be fuzzy logic [2,3]. The 
present paper gives some results on the application of the fuzzy logic in the classical process 
safety analysis.   
 
 
2. Traditional risk assessment model 
 
Traditional risk assessment model presents Fig. 1. 
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Fig. 1. Framework for process risk analysis. 
 
There are two main phases: 

1. The qualitative hazard analysis. 
2. The semi-quantitative or quantitative risk analysis. 

The first phase includes hazard identification and risk ranking in order to select the list of 
representative accident scenario (RAS). Several methods can be applied here including 
Hazard and Operability studies (HAZOP), Preliminary Hazard Analysis (PrHA), Failure 
Mode and Effect Analysis (FMEA), and others [1].  Those scenarios are subsequently 
examined by constructing of the fault tree (FT) and event tree (ET), in order to provide "bow-
tie” model for each scenario. This is starting point to the second quantitative phase. 
This is usually performed by the Quantitative Risk Assessment  (QRA) or semi quantitative 
risk assessment, e.g. LOPA. Within QRA or LOPA, two components are needed to be 
determined. The first one concerns the frequency of particular accident scenario, which is 
determined based upon previous established logic structures of the fault and event trees. They 
identify the different combinations of basic, intermediate and top events for fault tree and 
conditional, safety function and outcome undesirable events for event tree.  After qualitative 
examination of structure (MCS) the quantitative analysis of fault tree and event tree take 
place. The calculation requires providing the failure rate data for all inputs events identified in 
fault and event trees.  Both those analytical tools are based on traditional Boolean 
mathematical models using the classical two-valued logic where all variables are assumed to 



have sharply defined boundaries. Usually, as a result of that analysis a single-valued 
frequency, which characterizes a particular accident scenario, is obtained. 
The second parallel component of QRA concerns the assessment of possible severity of 
consequences of those RAS. It can be accomplished in several ways, e.g. by the effects and 
consequences analysis or for certain cases by the subjective reasoning and expert judgement. 
Both components that is frequency and severity of consequences are combined together to get 
risk contours map (in QRA) or category of risk (in LOPA).  
The output from the risk analysis usually provide point estimate of risk, which may be change 
to the other single-valued risk after introducing a new input data. In such way, these point 
estimates belong to a risk distribution that reflects the uncertainties in the data and models 
applied in the PSA.  
As can be concluded, the assessment of safety assurance cannot be based on the single-valued 
risk and the same, plant cannot be classified into the dichotomy safe/unsafe only. This is 
because the process plant is never safe or unsafe on an absolute basis. It has always a certain 
level of hazards, which cannot be completely eliminated as well as due to numbers of 
uncertainties it always has a certain level of “unsafeness”. This eliminates the Boolean 
approach, which sharply says: plant is safe or plant is unsafe. Therefore, there is need to apply 
some other mathematical method that will tell, “how much is process plant safe”, that is 
method which introduce the “matter of degree”. This is fuzzy logic, which may deal with 
typical risk assessment uncertainty caused mainly by fuzziness, vagueness and ambiguity.  
 
 
3. Uncertainty in process risk assessment 
 
Uncertainty in process risk analysis applies to imperfect prediction of future accident scenario 
risk related to unwanted release of dangerous substance encountered in chemical processes. 
The Process Safety Analysis (PSA) realizes that prediction. Taking into account Fig.1 there 
are four main components to be analysed: 
 - identification of accident scenario (RAS), 

- the frequency of the RAS, and 
- severity of consequences of those scenarios, 
- risk estimation and assessment.  

Each component has its own specific functions in PSA and the same there are different 
uncertainties sources related to above mentioned components.  
In terms of PSA, consisting of some separate steps of analysis with different qualitative-
quantitative approaches in each step, it is convenient to distinguish three types of 
uncertainties: 
1. completeness uncertainty, 
2. modelling uncertainty, 
3. parameter uncertainty.  
The completeness uncertainty refers to the question whether all significant phenomena and 
all relationships have been considered. This uncertainty is difficult to quantify but this type is 
a major contributor in hazard analysis. Modelling uncertainties refers to inadequacies and 
deficiency in various models used to assess accident scenario probabilities and its 
consequences. Availability of these models may enable the interpretation of different degrees 
of belief in each model. This is a major type of uncertainty in consequence assessment. This is 
a subjective uncertainty or knowledge elicited from experts, which is often incomplete, 
imprecise and fragmentary. The imprecision and inaccuracies in the parameters which are 
used as an input to PSA are called parameter uncertainty. Such uncertainty is inherent 
because the available data are usually incomplete and the inference process needs to be based 



on incomplete knowledge. However, there is an opinion that parameter uncertainty is the 
easiest to quantify. This type may exist in each step of PSA. It is not easy to separate all these 
types. Table 1 gives a summary of the sources and types of the uncertainties in PSA.  
 
Table 1. Sources and types of uncertainties in PSA 

Types of uncertainty Step of PSA Main goal 
 

Main tool  
Completeness  Modelling Parameter 

Hazard 
analysis 
 

Identification 
and logic 
structure of 
accident 
scenario (RAS) 

HAZOP 
PHA 
Fault Tree 
(FT) 
Event Tree 
(ET) 

Inability to identify 
of all contributions to 
risk and all RAS as 
well errors in 
screening of hazards  

Wrong interaction 
between different 
contributors and 
variables in 
accident scenario 
models 

Imprecision or 
vagueness in 
characteristic 
properties of 
contributors and 
variables 

Consequence 
assessment   
 

Health, property 
and 
environmental 
consequences 
 

Consequen-
ce models 

Incorrectness in 
identification of all 
types of the 
consequences as well 
as of all interactions 
among consequences  

Complexity 
phenomena and 
inadequacy and 
imprecision of the 
models for source 
terms, dispersion 
and physical effects 

Lack or 
inadequacy or 
vagueness in 
values for model 
variables 

Frequency  Frequency of 
RAS 

FTA and 
ETA  
(“bow-tie 
model”) 

Wrong selection of 
events, safety 
function and number 
of accident outcome 
cases  

Wrong analysis of 
FT and ET leading 
to inadequate 
Minimum Cut Set 
(MCS) 

Lack of real time 
data for 
equipment failure 
rates and human 
errors  

Risk 
estimation 

Risk indexes or 
risk category 

QRA 
QRAS 
LOPA 

Limited assumptions 
in: external 
conditions, in number 
of accident outcome 
cases and 
incorrectness in 
interpretation of 
results 

Inadequacy in 
selection of 
appropriate risk 
measures as well as 
of risk acceptance 
criteria 

Lack of real time 
data weather 
conditions, 
ignition sources 
and population 

 
There are many different approaches to uncertainty analysis: classical statistic, probabilistic, 
sensitivity analysis and possibility approach [4-5]. In science, it is traditional to deal with 
uncertainty through the use of probability theory. This approach is frequently used for 
variability uncertainty connected with stochastic variability of different parameters or 
measurable quantity used for different PSA methods. It does not work with knowledge 
uncertainty especially encountered in the frequency analysis (FTA and ETA) and 
consequence assessment. Knowledge uncertainty is generally more difficult to handle than 
physical variability. 
One of the current uncertainty theories devoted to the handling of incomplete information 
more precise and the simplest from mathematical point of view, is the possibility theory [6-8]. 
This theory, which emerged from the fuzzy sets developed by Zadeh [2] considers expert 
information on a particular linguistic variable, e.g. frequency rate of particular basic event 
with possibility being matter of degree from 0 to 1. As a result of application of fuzzy logic 
system (FLS) applied to a certain step in the PSA, the output variable (e.g. risk representing 
safety assurance level) is obtained and represented by a certain fuzzy set what allows to 
answer the question of safety: “how safe is the plant?” This is a completely opposite 
approach to the typical risk evaluation method where the received risk level answers only to 
the question: “is the plant safe?” As we said before, the answers “no” or “yes” are 
unrealistic because of, e.g. the presence of inherent risk in each chemical plant. Therefore, we 
feel that the process safety analysis is a “fuzzy issue” and therefore the fuzzy sets theory can 



be effectively included into process risk analysis to reduce substantially knowledge 
uncertainty.  
 

4. Fuzzy logic basic 

Fuzzy logic is the general name of “fuzzy set analysis” and “possibility theory,” which can 
work with uncertainty and imprecision and is an efficient tool for applications where no sharp 
boundaries (or problem definitions) are possible.  
Fuzzy set A, defined on collection of objects called universal set X, represent a class of 
objects with a continuum of grades of membership. Such a set is characterized by the 
membership (characteristic) function, �A(x) which assigns to each object a grade of 
membership ranging between zero (non membership) and one (total membership). In that way 
a fizzy set is set of pair: }));(,{( XxxxA A ∈= µ , where ]1,0[: →XAµ  is membership 
function describing degree of belonging for x in A. Fig. 2 illustrates the differences between 
classical set and fuzzy set for “”safe state”. 
 

 
 

Fig. 2. Classical set and fuzzy set for “safe” and “unsafe” state. 
 
The fuzzy sets undergo similar mathematical operations like in classical set theory that is 
intersection, union, and complement and the the foundations of fuzzy arithmetic are already 
well established [9]. 
The use of fuzzy logic (FL) in different aspects of safety and reliability analysis has been 
undertaken in a number of papers [10 - 14].  
Fuzzy modeling is realized by the Fuzzy Logic System (FLS), which maps crisp inputs into 
crisp outputs. The FLS structure is shown in Fig 3.  
 

 
 

Fig. 3. The structure of a typical fuzzy logic system (FLS) 
 



Fuzzy logic system (FLS) consists of the following components: 
1. The fuzzifier decomposes system input variables with crisp numbers and maps the 

crisp numbers into fuzzy sets. It means that fuzzification is the formation of fuzzy set 
A  in some relevant universe of discourse X { x1,x2,x3,…} with assignments of the 
membership function �(x) to particular linguistic variable, to be represented by the 
order pair (x, �(x)). 

2. The inference engine of the FLS maps input fuzzy sets, by means of a knowledge 
base, into fuzzy output sets. It follows “if-then-else” rules established on the basis of 
human knowledge and/or mathematical calculus specifically used in analysis of 
particular operation. Each rule consists of a condition and an action, where the 
condition is interpreted from the input fuzzy set and the output is determined from the 
output fuzzy set. Each calculus represents mathematical algorithms describing certain 
analysis, e.g. consequence or frequency analysis. In other words, fuzzy inference is a 
method that interprets the values in the input vector and, based on a set of rules, 
assigns values to the output vector. 

3. The defuzzification is a process of weighting and averaging the outputs from all of the 
individual fuzzy rules or calculus into one single output precise, defuzzified, crisp 
value. 

In such a way by means of FLS one is able to maps imprecise, uncertain input parameters of 
the particular model into output of this model that is exactly determined. This property was 
built-in a typical risk assessment procedure forming fuzzy risk assessment model (fRA). 
 

5. Fuzzy risk assessment model (fRA) 

Traditional risk assessment model shown in Fig. 1. was modified by use of FLS for each 
appropriate element to received fuzzy Risk Assessment (fRA) model which is shown in Fig 4. 
It consists of combination of traditional part, where methods within the Process Hazard 
Analysis (PHA) are used, and “fuzzy part” where Fuzzy logic Systems (FLS) are applied to 
all elements of risk analysis. The new element called fuzzy Risk Correction Index (fRCI) was 
introduced in order to take into account the effect of quality of the process safety analysis on 
overall risk index [ 15] .  
 

 
 

Fig. 5. Fuzzy Risk Assessment model (fRA) 
 



 
Fuzzy part applies the principle of Fuzzy Logic System for each element of the RA in 
different mapping ways; either applies the fuzzy rules or applies the fuzzy algebra. There are 
five of FLS as follow: 

1. FLS for the calculation of fuzzy probability FRAS uses arithmetical operation on fuzzy 
numbers follows the fuzzy algebra. As a result the fuzzy probability of outcome event 
for particular RAS is obtained (fLOPA). 

2. FLS for the calculation of severity of consequences, SRAS using fuzzy rules provided 
by fLOPA. 

3. FLS for the evaluation of fuzzy risk index R0(RAS), using fuzzy inference provided 
by fuzzy risk matrix. 

4. FLS for the evaluation of risk correction index RCI, using fuzzy rules presented in 
Table 2. 

5. FLS for the evaluation of final risk index R(RAS), using fuzzy rules, presented in 
Table 3.    

After defuzzification the outcome risk index is obtained which presents the range of values 
that belong to the particular set with a certain membership function.   
 
The development of fuzzy sets and rules for first three elements were presented in our 
previous papers [14, 16,17] and Fig. 6 presents the fuzzy risk matrix used for evaluation of 
fuzzy risk index and its with  comparison with the traditional risk matrix. 
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Fig. 6. Traditional risk matrix and fuzzy risk matrix 
 
FLS for the calculation of severity of consequences, SRAS using fuzzy rules  applied to the 
consequence models is shown below.  
 
 
6. Fuzzy logic system  for severity of the consequence  
 
Emergency management is based on proper prediction of  the severity of consequence of 
accidental releases of the chemicals. This is a very complex task. A detailed consequence 
analysis contains number of consequence models including: release models, physical models 
and vulnerability models [18, 19]. The scheme of consequence analysis is shown in Fig. 7. 
 



 
 

Fig. 7. Consequence analysis for accidental releases of chemicals. 
 
Those models are interfaced allowing for transfer of data from a previous model to a 
subsequent model in the chain representing an accident scenario (RAS). Each model, 
containing separate sub-models for certain applications, must be calculated separately and has 
its own assumptions and different types of uncertainties. For example an objective uncertainty 
can occur for certain variables, like condition of released material (temperature, pressure) and 
meteorological conditions (wind speed and direction) used in released models, subjective 
uncertainties refers to the accuracy of the theoretical  models used for the simulation 
particular physical effects or vulnerability models, and so on. 
Models vary in degree of complexity and detail, and have common tendency to describe 
highly idealized situation. In such a way uncertainty of the first model will progress from one 
model to the next. This uncertainty propagation of the different types through the 
consequence analysis will require an application of some an integration methods with 
different techniques, depending on the expressed types of uncertainty [20].  
In such a way the final result of consequence analysis quantifying the health, safety, 
environmental or economic impact of particular accident scenario may be overestimated or 
underestimated with further serious consequence for a decision making process.  
Whereas the research on uncertainty problem concerning a frequency analysis is widely 
undertaken in literature, the same issue for consequence analysis is rather limited [13,14,20].  
Similarly to arguments we used before, the fuzzy logic could be successfully used in the 
consequence analysis. All vague input problems and subjective assumptions, encountered in 
consequence analysis, can be transformed in more precise output data by means of the fuzzy 
set theory.  
Because of the complexity each separate consequence model is considered as a separate fuzzy 
logic system FLS and the calculation is performed for that FLS according to the appropriate 
model algorithms. Each model can be represented in the general form as follows: 

),( PSfY =  
where S is the vector of state variables, P is the vector of parameters, and Y - output specific 
function of the model. State variables define the type of scenario, like type of substance, 
vessel temperature and pressure, etc, while vector parameters are uncertain  in the time of 
calculation, although in the time of scenario can have an exact value, e.g. the size of the 
release hole. Therefore there is a need to select these parameters that are especially uncertain 
and take them into account in fuzzy modeling.  
FLS applied to consequence analysis can be performed into two methods: 

1. simplified method based on the categorization of the severity of consequences into 
separate categories using an expert opinion providing the size of released materials; 
further process applies assigning of fuzzy set for that size of release (fuzzification) and 
this is input data for risk matrix assessment [19], 

2. parameter method used for particular consequence model, e.g. BLEVE model.  
 



The use of parameter method is shown in Fig 8. As can be seen this is a typical FLS applied 
for given consequence model. Before the fuzzification the sensitivity analysis takes place to 
identify potential major contributors (parameters, P) to overall output. After fuzzification 
further calculation uses an appropriate formula of each consequence model where a fuzzy 
arithmetic replaces the classical mathematical operation. It allows obtaining the crisp exact 
output value of the consequence model Y. 

 
 

Fig. 8. Fuzzy logic system for consequence analysis. 
 
An example of such application is shown in Fig. 9 on the BLEVE calculation for of the  
600 m3 tank with LPG with the help of PHAST program [21]. The results refer to three 
threshold values for thermal radiation 4, 12.5, 37.5 kW/m2 and relate to specific consequences 
which may occur. Input fuzzy sets for the sensitive parameters were taken as a trapezoid 
shape.  

.  

Fig. 9. Range of distance for different radiation levels. 

As can be seen the ranges of the hazard zones are widespread over the universe of discourse, 
especially for membership function αo = 0. That reflects high uncertainty of the distance of 
hazard zones. It can be additionally noticed that the extent of intervals increases with the 
decrease of the threshold value of thermal radiation intensity. It is due to two reasons: 

- firstly, to the exponential distribution of thermal radiation intensity in relation to the 
distance where for the distances close to the tank the thermal radiation intensity 
rapidly decreases and with the increase of the distance from the location of the failure 
the rate of thermal radiation intensity decrease is reduced; 



- secondly, to so called effect of fuzzy results caused by the calculations on fuzzy 
numbers. 

The comparison of fuzzy and non-fuzzy calculations are shown in Table 2. The results of non-
fuzzy calculation over predict the hazardous zone distance by about 10 % for all radiation 
levels.  
 
Table 2. Comparison non-fuzzy results with fuzzy results for BLEVE model 

Range of distance to radiation level [m] Type of analysis 
4 kW/m2 12.5 kW/m2 37.5 kW/m2 

Non – fuzzy  876 506 283 
Fuzzy  793 467 264 
 
 
7. Conclusions 
 

1. Process Hazard Analysis (PHA), being a basis for decision making process in 
chemical industry is a very complex task, representing numbers of uncertainties 
connected with information shortages and other inaccuracies which may lead to 
important overlooks in the risk assessment of the process plants. There is no common 
approach to deal with that aspects.  

2. One of the promising methods for reduction of the uncertainties in process safety 
assessment is fuzzy logic, which is the collective name for “fuzzy set analysis” and 
“possibility theory”. That allows using imprecise, vague and approximate data that 
are typically met in process safety analysis and after application of fuzzy logic system 
(FLS) the quite precise results may be obtained. 

3. The fuzzy risk assessment model is presented which consists of a traditional part 
typical of qualitative hazard identification and the fuzzy part used for the quantitative 
assessment of risk components (frequency, severity of consequences and risk index). 
For fuzzy parts the FLS was applied to each component of risk analysis (in different 
way). 

4. Application of fuzzy approach for BLEVE consequence analysis indicates that the 
output results are more precisely determined and indicate overestimation of hazardous 
zone using non-fuzzy traditional approach in comparison to fuzzy approach.  This is 
important issue for emergency management.  
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