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Wildfires are long considered part of the ecology of the forest life-cycle, but
uncontrolled wildfires in recent years have devastated prime recreation land,
destroyed property and caused loss of life. Though many wildfires are natural in
origin, it is increasingly evident that many wildfires are human-induced or at least
contributed by human actions. Despite significant progress in forecasting,
modeling, fire fighting and emergency response, fires have continued to escalate
causing untold damage and losses. The behavior of wildfires has been studied
analytically and experimentally for nearly half a century. However, it is in recent
decades that the use of remote sensing, Geographic Information Systems  (GIS)
and modeling have improved our understanding of wildfires. Yet, despite some
significant progress, current analytical techniques for wildfire growth prediction
fail to address the following issues: (1) neighborhood effects; and (2) influences of
probability of fire occurrence on wildfire spread.  This study addresses these
problems by using GIS, spatial autocorrelation analysis, and logistic regression to
create a probability model of fire occurrence and estimate the probability of fire
occurrence in the Bee Canyon of San Jacinto Mountain where a major fire
occurred in 1996.  Based on a grid-based GIS and the empirical fire growth data, a
probabilistic grid automation model is constructed to simulate wildfire propagation
in an environment of heterogeneous conditions. The grid automation model further
incorporates Rothermel’s model to estimate the fire spread rate and predict fire
spread distribution depending upon predefined time.  The simulated patterns of fire
spread distribution are compared with the empirical fire propagation data collected
from the Bee Canyon fire.  The results indicate that the grid automation model
could provide useful information to help the management decision making and
suppression strategy of wildfires in a heterogeneous landscape.
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Wildfires are long considered part of the ecology of the forest life-cycle, but
uncontrolled wildfires in many parts of the world in recent years (e.g. in Indonesia
and Brazil in 1997; in the United States in 1999 and 2000) have devastated prime
recreation land, destroyed property and caused loss of life. For example, El Nino



conditions in mid-1997 gave rise to devastating forest fires (some natural but most
human-induced) that gave brought about significant environmental changes such as
forest and habitat destruction, drought, crop loss, regional haze, high temperatures
and extremely dry conditions – all culminating in serious health, economic and
environmental effects (Chan and Kung, 2000). Though many wildfires are natural
in origin, it is increasingly evident that many wildfires are human-induced or at
least contributed by human actions.

Wildfire is a natural process that alters landscape structure and creates patch
mosaics over the landscape, keeping landscapes in a dynamic equilibrium situation
in a large context of time and space (Liu, 1998). Yet, history has shown that many
wildfires, if unchecked, could lead to great devastation of resources, ecology and
life. Hence, there is the age-old question of whether wildfires should be stopped at
all costs, or should they be allowed to play their role in thinning forests. For
example, the creation of chaparral mosaics in southern California is the basis of fire
control which would reduce the fire size and fires would be distributed more
evenly over time and space (Minnich and Chou, 1997).  Wildfires also threaten
natural resources, endangered species, human lives, and property.  Between Oct.
26, 1993 and Nov. 4, 1993, for example, more than a dozen wildfires raged in six
southern California counties.  Wildfires swept over 200,000 acres of land,
destroyed 1,000 homes, and caused damage estimated at 950 million dollars (Facts
on File, 1993).  In January 1994, cities along the 750-mile eastern coastline of the
Australian state of New South Wales were ravaged by more than 150 bush fires.
These fires spread over 1.9 million acres of land, destroyed thousands of homes,
and cost between 50 million and 100 million Australian dollars (Facts on File,
1994).  A fire can be considered either as a prescribed burn, which serves
management goals, or a wildfire, which tends to be unwanted and may require
certain measures to be taken to control it.  If a wildfire shows no foreseeable risk
to human life and severe ecological effects, it may be monitored under conditions
of prescription.  More importantly is the question of how effectively can people
respond to wildfires.

Adequate wildfire management decision-making and suppression planning depend
on the knowledge and understanding of wildfire behavior, and information on
when and where fires are likely to occur which are influenced by weather, fuels,
and topology.  Fire models can be used to evaluate the probability of a fire
spreading into a residential area and the threat to property and lives.  Predicted
results from fire models could provide an important reference for decision making
and management strategies.

However, some fire models are non-spatial models that cannot generate important
spatial information for management purposes.  In general, non-spatial models
require repeated calculations over the long periods of time and cannot provide
locational information regarding how a fire spreads, when the fire reaches certain
locations, and its growth pattern.  In addition, models for fire spread through



heterogeneous fuels typically assume that the factors influencing fire spread rates
are homogeneous within specified areas (Taplin, 1993).  However, fires propagate
through landscapes with different types and spatial arrangements of fuels.  As a
result, it is difficult to predict the spatial pattern of fires efficiently (Rothermel,
1991).

The methods for predicting fire behavior and simulating fire growth under
heterogeneous conditions have not been well developed because of technical
difficulties in handling complex geographical information in large wildlands.  GIS
and spatial analysis, however, have made it possible to deal with complicated
heterogeneous conditions.  Although attempts have been made to integrate fire
behavior models with spatially heterogeneous conditions in a GIS, no existing fire
growth methods have incorporated two important factors: neighborhood effects
and fire occurrence probability.

This research constructs probability models of fire occurrence and grid automation
model for fire growth simulation using GIS and incorporating two important
factors, neighborhood effects and probability of fire occurrence.  This research
emphasizes on the spatial modelling aspect of wildfire movement, while
incorporating the Rothermel’s model for determining the fire behavior
characteristics from a heterogeneous environment.
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The San Jacinto Ranger District of the San Bernardino National Forest (Figure 1)
is selected for this study.  The fire history in the district and fire propagation data
of the Bee Canyon fire in 1996 provide the necessary data to construct both
probability models of fire occurrence and grid automation model for fire growth
simulation.  The study area, located 150 km east of Los Angeles, California, is
dominated by a Mediterranean climate with hot, dry summers and cool, wet
winters.  Precipitation increases with elevation from 30 cm at Hemet to 70 cm
along the crest of the range, then decreases to 10 cm in the desert (Minnich, 1986).

The Bee Canyon fire started on the Bee Canyon road from a southern aspect at
16:47 Pacific Daylight Time, June 29, 1996 at an elevation of 700 m.  A total of
3,893 ha were burned between June 29 and July 3 under high temperatures and
light winds.  This area is mostly covered by the chaparral fuel type, dominated by
chamise. The fire propagation map delineating fire spread at different locations and
times is given in Figure 2.

A GIS database containing digital data of several variables related to wildfires was
established.  Among the multiple layers of spatial data in the database, ten
coverages were employed in the study.  The database is organized into fourteen
USGS 7.5-min. topographic quadrangles.  Data layers include fire history,
vegetation, temperature, precipitation, slope gradient, slope aspect, elevation,



roads and trails, man-made structures, and fire propagation data of the Bee
Canyon fire.
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Neighborhood effects represent the influence of entities or features on similar
entities in an adjacent area (Chou, 1997).  The spread of wildfire is a contagious
diffusion process.  Hence, neighborhood locations are affected by the same fire
phenomena and fire occurrence conditions at one place are related to those of
surrounding locations.  Therefore, neighborhood effects play an important role in
the underlying process and distribution of wildfire.

In this study, the degree to which wildfires are spatially autocorrelated is tested
using Moran’s I coefficient (Moran,1950), such that
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where [  is the number of polygons delineated in the coverage.  \ ] ^ is a measure of

the contiguity between polygon _  and polygon ` .  If the value of I is equal to 1, _
and `  are contiguous; if the value is equal to 0, _  and `  are not contiguous.  a b
equals 1 if the _ th polygon was burned and otherwise it equals 0.

A FORTRAN computer program has been developed to extract necessary data in
ARC/INFO from the Polygon Attribute Table (PAT) and Arc Attribute Table
(AAT) and derive Moran’s I and the related statistics for significance testing
directly from the attribute tables.  The distribution of fires illustrates a positive
spatial autocorrelation at a 0.01 significance level, which represents a highly
clustered pattern of wildfire distribution.

The contiguity weight is translated into a code of spatial term of neighborhood
effects ( cBd�e ) from the following formula:fBg�h�i
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where cBd�e  is the ratio of the number of burned neighboring polygons to the
number of total neighboring polygons.  This cBd�e  variable is incorporated in the
logistic regression model to explain the distribution of fire occurrence.

@BA4,nm�1 0 7 9 7 ? Q ? 8 -oF(0/24, Qp0
O�K�? 1 ,�q�: : >41 1 , <4: ,�r*3 ? <4MtsH0/M/? 3 8 ? :�u*, M/1 , 3 3 ? 0/<
6 <49
Q -=3 ? 3

Fire occurrence probability is defined as the likelihood for major fires to occur in
an area.  The probability value represents the potential of fire occurrence.  This
study considers fire occurrence probability as the underlying factors in fire
propagation location, because the probability of fire occurrence influences the fire
spread pattern and distribution.



In order to evaluate the probability of fire occurrence in an area, it is necessary to
construct a probability model of fire occurrence based on the variables that affect
the likelihood for fires to occur in that area.  Logistic models are based on a
sample of n independent observations and each observation is described by v
independent variables.  The dependent variable w b  is linked to the independent
variables through the logistic function (Chou, 1992) such that:

xHy =
exp( z y )

1+ exp( z y )
where { |  denotes the probability value for the th polygon to burn (  =
1,2,3,4,,,,n). } ~  is a vector product of the form:� �

= β0 + β1 � 1

�
+ β 2 � 2

�
+ β3 � 3

�
+.. ....+β � � � �

where � � �  denotes the value of the ` th independent variable ( � =1, 2, 3, ...,v  ) for

the th observation.  β � is the estimated coefficient of the independent variables � � .
The probability for the th polygon to burn is determined by the quantity } ~  which
has a value between negative infinity and infinity.  A greater } ~  implies a higher
probability for a fire to take place in the th polygon (Chou, 1997).

The results of the logistic regression include the estimated parameter and

associated � 2  and � -value of each independent variables (Table 1).  This model
has three significant independent variables.  The values of these variables,
vegetation rotation, July maximum temperature, and the spatial term of
neighborhood effects, could be used in the model to calculate the probability of fire
occurrence for each study unit.
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Based on the concept of cellular automata and the empirical data of the Bee
Canyon fire, a probabilistic grid automation model is created in GRID module of
ARC/INFO GIS using Arc Micro Language to simulate wildfire propagation over
heterogeneous environment.

The probabilistic grid automation model is a discrete dynamic system in which
states of grids in a regular lattice are updated according to a set of stochastic rules
that depend on its current state and the states of its neighbors.  In fire growth
implementation, each burning cell chooses its next spreading cells depending on
the probability value of its neighboring cells.

Based on the probability model of fire occurrence derived from the logistic
regression, the probability field of the Bee Canyon was calculated according to the
value of significant variables established in GIS.  The grid automation model
applies the probability field as the basis for simulating the progression of a fire.
Based on the basic probability, the grid automation model modifies the probability



value for every grid cell in each time step, according to wind direction, wind
magnitude, slope gradient, and relative location respect to the burning cell.  The
magnitude of the weight in the adjustment procedure is calibrated based on partial
real time burning data from the Bee Canyon fire of San Jacinto Ranger District in
1996.  The higher probability value adjustment indicates greater fire preference.

The probabilistic grid automation model consists of three parts: several 2-
dimensional rectangular grids, a template of neighboring cells, and a set of
processing rules which determine the burning states of each cell.  Grid layers used
in this model include probability field, fuel type, elevation, slope gradient, and
slope aspect.

 Since fire spread is a process of contagious diffusion between neighboring cells,
adjacency is the major controlling factor.  The neighboring cells are defined as
immediate adjacent cells which have the size of eight.  The burning status of each
grid cell at any time step is determined as a function of the burning status of the
neighboring cells at the previous time step.  This form can be expressed by
equation� �
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where � � , ��  denotes the value of grid cell � , �  at time � .  �  represents the rule

defining the fire propagation.  The new state (either burn or unburn) � � , �  +1  depends

on the previous burning states of eight adjacent cells.  For each burning cell in each
time step, every neighboring cell from the burning cell is evaluated to decide the
fire propagation according to the Monte Carlo method.  The Monte Carol method
involves taking a set of randomly selected numbers to compare with the adjusted
probability value of fire occurrence to simulate the fire propagation.

The advanced model further incorporates the Rothermel’s model to calculate the
fire spread rate and estimate the fire spread time over each grid cell which is used
to delineated possible burned area under predefined period of time.  Rothermel’s
fire spread model (1972) is the basis for most computer-based fire management
applications in the United States.
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The results of fire growth simulation are compared with the real fire propagation
data in the Bee Canyon fire in 1996 to validate the probabilistic grid automation
model.  The approach proposed in the study works reasonably well.  From the
quantitative comparisons between the simulation results from the advanced model
(Figures 3-6) and the empirical burned data, the average percentage-correctly-
estimated (PCE ) index for polygon one to polygon four is 72% (Table 2) which is
better than the results from random estimations for this study to conclude that the
grid automation model, which is implemented in the ARC/INFO GIS, can be



effectively used to simulate the movement of wildfires over complex terrain and
through heterogeneous fuel types.
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The probabilistic grid automation model simulates the process of fire propagation
according to a set of specified rules based on the probability distribution over
space and time.  This model could be useful for both fire-related ecological
research and empirical wildfire management.  The model allows ecosystem
managers to visualize the spatial data and simulation results of management and
policy decisions.  For instance, if the simulated results show that the fire will
spread into a developed area, the fire suppression plan should be taken
immediately.  The simulation results can also be used to determine the most
appropriate suppression strategy and design the location of fire breaks and
suppression forces.  If the simulated results show no foreseeable risk to human life,
to endanger species, and to have severe ecological effects, wildfires can be
monitored and controlled under the conditions of prescription.

Because wildfire is an important natural force shaping and maintaining the wildland
environment, forest, range, and brushland managers may carefully use fire under
control in selected situations to effectively manage natural resources (Chase,
1990).  The prediction of the rate of spread, intensity, direction, location, and
burned area of a wildfire not only enhances over knowledge about ecological
processes but also supports wildfire management decision-making.

The information regarding potential fire spread direction, location, and burned area
of a wildfire is very important to wildfire management decision making.  Since this
fire growth automation model implemented in GIS can simulate general fire
movement, potential burning area, fire perimeter, and fire behavior characteristics
under different fuel, topography, and weather conditions, it could provide the
probable consequences of various actions.  The fire growth simulation model could
be used to answer "what if" scenarios to examine the possible effects of proposed
actions and analyze alternative management programs for a given area.  Fire
managers may apply these spatial-temporally dynamic parameters along with other
spatial data to test the possible effects of different strategies.  Because it is
extremely expensive and difficult to reverse a decision later when applying a fire
prescription (Andrews, 1989), potential problems could be screened on the
computer before affecting human lives, property, or natural resources directly.
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Table 1. Statistics of the logistic regression model.
ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö
Parameter � 2 � -value
_______________________________________
β 0 64.24 0.0000

 β1 (AREA) 0.78 0.3780

 β 2 (PERI) 0.51 0.4734

 β 3(ROTA) 17.48 0.0000

 β 4 (BLDG) 1.21 0.2715

 β 5 (CAMP) 0.00 0.9810

 β 6 (ROAD) 2.30 0.1295

 β 7 (TEMP) 9.31 0.0023

 β 8(RAIN) 0.17 0.6791

 β 9 (NBR) 9301.56 0.0000

Log Likelihood =  -112.237
PCE = 99.4
ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö/ö
*÷

.05,1
2  = 10.247

Table 2. The PCE index from the advanced fire growth model for polygon one to polygon four.

__________________________________________________________________________
Number of predicted cell Number of predicted cell
that actually burned / that actually burned / Average
Number of predicted cell Number of burned cell

__________________________________________________________________________
Polygon one 53.1 94.4 73.8

Polygon two 49.3 100.0 74.7

Polygon three 62.5 47.7 55.1

Polygon four 82.7 83.5 83.1
_________________________________________________________________________
Average 61.9 81.4 ø ù
_________________________________________________________________________
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