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ABSTRACT

A numerical method is proposed
for calculation of extreme tidal
levels from the harmonic
constants of any number of
component waves with the aid
of nonlinear programming. The
method is applied on a computer
for 34 component waves
obtained from harmonic analysis
of a monthly observation series
by the Doodson method. The
influence of the number of
component waves considered on
the extreme tidal levels is
investigated.

1. INTRODUCTION

Information on extreme sea
levels is needed for solution of
various practical problems in
marine navigation and hydraulic
construction. On the tidal seas
of Russia, where the mean tidal
range (the difference between
successive high- and low-water
levels) is 50 cm or more, depths
must be reduced to a theoretical
zero depth (TZD).: ~The
theoretical zero depth is cal-
culated by reducing the initial
mean level by the amount of
the largest tidal ebb amplitude

which is determined for each
station from the harmonic
constants. Many papers have
been devoted to determination
of extreme tide heights. The
Laplace method is used for the
particular case of regular
semidiurnal tides [Vladimirskii
1941]. Until recently Vladimirskii
method [Vladimirskii 1936] has
been used in practical
hydrographic and oceanographic
studies to calculate extreme tide
neights. In this method, the TZD
is usually calculated from the
harmonic constants of the eight
principal components of the tide
waves. Vladimirskii’'s method is
extremely time-consuming. It
does not take account of
secondary tidal waves. Although
their amplitudes are relatively
small, they may, taken together,
have a perceptible influence on
the level.

In 1956, Kudryavtsev pro-
posed a method for determining
the TZD from the harmonic
constants of the eight principal
component waves of the tide.
This is essentially a simplified
Vladimirskii method. The author
assumed that the tide waves with

that is astronomically possible, 243he highest amplitudes are also



in phase. This assumption is
quite artificial. The study
[Peresypkin 1966], in which the
extreme tide heights are
calculated from the harmonic
constants of 30 component tide
waves, is similarly deficient.

It has recently become
possible to use computers to
solve the problem for any
number of component waves. In
1974, Peresypkin proposed a
method for finding extreme tide
heights, which he developed in
detail and used on a computer
for 13 tide-wave components
[Peresypkin 1974]. The method
is based on solution of a system
consisting of four equations with
four unknowns. The deficiencies
of this method include errors
associated with the expansion in
Taylor series and the poor
convergence of the iterative
process in the case of shoal
waves with high amplitudes,
which makes it necessary to
carry out the solution in several
steps.

2. NUMERICAL METHOD

The method proposed here
differs from the above methods
in that it is not subject to these
shortcomings and uses simple
computations that do not require
a large computer memory. The
method is developed and applied
on a computer for 34 component
tide waves. However, it can easily
be extended to any number of

number of waves considered has
no significant effect on the
volume of a computational work.
The problem is formulated as
follows. The harmonic constants
of the tide at some station are
given. It is required to determine
the highest and lowest levels that
are theoretically astronomically
possible at this station. The sea
level H, relative to mean sea
level can, as we know, be rep-
resented in the form of a sum
of tide waves:

H':Z f, H, cosp, ,

where for each wave f is a
reduction factor that depends on
the longitude N of the moon’s
ascending node, H, is the
amplitude harmonic constant,
and ¢, is the phase of the tide

component wave.

Harmonic analysis of tide
observations consists in breaking
up the composite wave into its
individual components. Our
problem is therefore to
synthesize the component waves
in such a way that the height
of the tide assumes extreme
values. According to
[Vladimirskii  1941)], it s
necessary to shoose reduction-
factor values that will give the
largest effect for H,, and H_, .
Reduction factors corresponding
to N =0° are chosen for the
diurnal tides and  values
corresponding to N = 180° for

waves, and an increase in the p44he semidiurnal tides. In the case



of mixed tides, the calculations
are made in both ways and the
largest absolute values are
chosen. Our method is designed
to use initial data in the form
of results of harmonic analysis
of monthly series of observations
by the Doodson method, which
can be made to yield the
harmonic constants of 34 waves.
Calculations that consider larger
numbers of secondary waves with
amplitudes in the centimeters
and fractions of a centimeter do
not promise any significant
improvement. This becomes un-
derstandable when it is
remembered that the absolute
variations of the harmonic
constants of the main waves
exceed the harmonic constants
of some of the secondary waves.

The values of the reduction
factors for the cases N = 0° and
N = 180° and the expressions
for the phases as functions of
the  principal  astronomical
elements of the 34 component
tide waves (2 long-period, 10
diurnal, 10 semidiurnal, : B
shallow-water) are chosen from
[Peresypkin 1966], where t is
the mean civil time reckoned
from midnight, h is the mean
longitude of the sun, s is the
mean longitude of the moon, p
is the mean longitude of lunar
perigee. The rest of fundamental
astronomical elements have the
following periods, during which
they assume all possible values
from 0 to 360°: t = 24 mean
hours, 1 & =

h = 365,25 mean days, p = 8,85
years, N = 18,63 years. Since
the periods are not
commensurable with one another,
we can, over an indefinitely long
span of time, obtain simultaneous
combinations of all combinations
of values of t, s, h and p, while
N can assume the constant
values O and 180°. The
astronomical conditions are
determined from the following
criteria: s — h=0° at new moon,
s—h=180° at full moon,
s—p=0° at perigee, s=0° (or
180°) for the moon on the
equator, s = 90° for the greatest
northern declination of the
moon, and s=270° for the
greatest southern declination of
the moon.

For simplicity in the
exposition that follows, we
introduce new notation, namaly:
we shall denote a function
by y and the argument
corresponding to it by a vector X

GIJ' x(li‘ x

= (t, h, s, p).

3
P CURL

In the new notation, the
problem can be formulated thus:
min (max) p(x) =

34
= min (max) 2 f, H, cosp,. (1)

k=1

The problem (1) is a problem
of nonlinear programming. At
this time, one of the most widely
used methods for finding the
extremes of a function is the
gradient method with its various

27.3 mean days, 245modifications. This method is



simple and makes possible
complete solution of the prob-
lem in many cases. However, it
has a highly important
shortcoming: it can be used to
find only local extremes of a
function. 1In practice, this
difficulty can be overcome by
preliminary investigation of the
function and subsequent
comparison of the results
obtained. We propose here an
extreme-search method that
combines the method of
sequential enumeration and the
method of steepest descent.

Let the function o (x) be
defined on a compact set

X € B, E, = xV, x?, x@, x@)},

where . E, .is a. four. —
dimensional Euclidean space.
The maximum of the function
¥(x) on X is reached on a
certain nonempty set S C X.
We note first of all that y (x) is
continuous on E, and 2x peri-
odic with respect to each
argument, i.e., X € [0,2n]. We
denote the solution of this prob-
lem by F(x,. It is necessary to
determine F (x,), the extreme
of the function of four variables,
with a predetermined error ¢ and
to find the point x, at which
this approximation is satisfied:

F (x;y = P(x; < €.

The problems of finding the
lowest and highest levels are
solved similarly. For consistency,
we introduce the symbol

S 1, if maxy (x) is sought,
= 1,if miny (x) is sought.

The object of the search is
to find a combination of values
of the arguments x at which the
value of the function y (x) is at
maximum (by introducing the
symbol L, we have reduced the
extreme-search problem to a
maximum-search problem).

The numerical solution of
Eq. (1) is carried out in two
steps. In the first step of the
extreme-level search, a discrete
minimax problem is solved to
find the initial approximation.
We vary successively only the
first coordinate of the vector x
with the other arguments fixed,
assuming

xE” =0, xg') = x(ll)+ Cy ey

xf,” = x;_l +C,,
where C, is a certain increment
(const). We find F, from the
formula

o, = Lmax [Ly (x,), Ly (x,),...,
Ly (x)]. (2)

If we have obtained
x" > 2z after the n-th step, the
level calculations at this step are
terminated, with the result that
F, assumes the maximum value.
In the case of semidiurnal tides,
when the largest tides are
observed at new moon and full
moon, the values of the other
three coordinates in the
calculations with (2) can be put
equal to 180° (new moon,

24eperigee), while in the case of



diurnal tides, when the highest
tides are observed at the greatest
declinations of the moon, the
values of the other three
coordinates are taken equal to
90° (greatest northern
declination, perigee). The choice
of these initial values of x, for
which o (x,) is near the extreme,
and the use of the enumeration

procedure for the first
coordinate eliminate unpro-
mising local extremes from

consideration. In determination
of the lowest level of an irregular
semidiurnal tide, for example,
the sequential enumeration
method enables us to find low
water springs, and then it is
precisely this level that is sub-
sequently minimized (improved).

We fix the value of the vector
x,, which corresponds to F, and
go on to the second step of the
search, in which the method of
steepest descent is used with
double the change in increment
[Evtushenko 1971]. Let us
illustrate the working principle
of the method in this case. We
take the step

X, =x,+7,LVy(x).

There 7, > 0 is a coefficient
and Vv is the gradient of the
function v, i.e., a four-
dimensional vector with the
coordinates (9 y/ax®, ay/ax?®,
ay/ax®, ay/ax®). The gradient
Vy indicates the direction of
steepest ascent (descent) of the

a given point. For the point x,
to be an extreme point of
¥ (x), it is necessary that the
equality Vy (x,) = 0 be satisfied.
The magnitude of each i-th
coordinate of the gradient vector
of ¥ (x) is evaluated from the
formula

Yy _yX-yX),
3 x® Ax :

here xXV=x? for all j#i and
0 =x"+ Ax for j = i.

If the condition
LX) -v(x,))>0 3)

is satisfied at the step i = 1,
we take 7,=27, and make a

second step:
=X +5,LVy(X),

and so forth until condition (3)
is satisfied. If condition (3) is
violated at a certain i-th step,
we take

—~ —~ rl_l ~

x|=xl_l+L~4— Vy(x._,).

The optimum step length is
chosen in this way. The
iterations are terminated if the
condition

|V!}i(xi}| <C,,

where C, is a coefficient, is
violated. Thus, the search
process reduces to determination
of the most promising regions,
in which the method of steepest
descent is then used to find the
value of the function F (x,) with

function in the neighborhood of 24the required accuracy.



The program generates the
extreme value F, which repre-
sents the largest deviation from
mean level, as well as the values
of the astronomical arguments
t, h, s, p, and N that correspond
to the extreme. The value of t
determines the mean civil time,
and the value of h the day and
month. These data can be used
for calculations of the values of
s and p at 0" on 1 January, and
then the tables of the
astronomical elements can be
consulted to determine the year
in which the extreme tide level
may occur for the particular
station.

3. THE INFLUENCE OF
THE TIDE COMPONENT
WAVES

Table

Extreme Levels (cm)

as Functions of Number
of Waves Considered

No [Ekaterininskaya e
of Gavan
WAVES| Hmin | Hmax | Hmin | Hmax

8 [—-203 ) 196 |-98 97

13 [—-198 | 202 | -92 | 111

25 |—209 | 213 (-89 | 108

34 |=209 | 214 | -90 | 111

Table presents values

computed from 8, 13, 25, and
34 component waves for the
extreme tidal levels at the
Ekaterininskaya Gavan and Kem
stations (White Sea). The group

addition to the eight
fundamentals, the three shallow-
water waves M,, MS,, and M.,
which are most often taken into
account in computation of
extreme heights, and the two
long-period waves Mm and Msf.
In the calculation using 25
component waves, the thirteen
waves, named above were
supplemented by the remaining
semidiurnal and diurnal waves.
The data in Table indicate that
the positions of the extreme
levels are adjusted as the number
of secondary waves is increased,
and that calculations based on
25 and 34 component waves give
closely similar results. The
largest difference between the
values of the extreme tidal levels
obtained from 8 and 34
component waves is 18 cm for
Ekaterininskaya Gavan and 14
cm for Kem at high water
springs. Thus, the additional
waves, from the ninth on, change
the results of the extreme-level
determination significantly.
Consequently, the proposed
method makes it possible to
improve the accuracy of the
calculation and can be used for
practical purposes.
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