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ABSTRACT

This paper reports a probabilistic model for
the demand arriving at a hospital's emergency
department, and applies it in order to gain
insights into why certain enhancements work
and others do not. The full work is reported
in [1].

The emphasis in this work on
demand characterization and on demand
management, and not on service modeling.
The demand is characterized in terms of client
(patient) iliness categories and emergency
department resource parameters, using the
literature and a resource group of medical
professionals as a base. .

The analytic form of the model is used
to gain certain insights, and a spreadsheet is
used for additional insights. These include
comments on the variability of the resource
delivery, provision of storage as a means of
improving throughput, referral policies by
which the demand variability is reduced, and
the effects of shifts in the client base. The end
result of this is a tool and a set of insights to
understand and explain the nature of the
demand so that practitioners can see why
certain measures are effective. The
spreadsheet and results can also provide the
mechanism or conversation "enabler" by which
training or planning sessions can be held on
data planning needs, and on evaluations of
scenarios.
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1. INTRODUCTION

Emergency rooms are dynamic
environments, the nature of the facility
being random arrivals with a variety of
client needs. The randomness gives rise
to scheduling and staffing problems, with
great challenges for an operations
manager.

Visits to a number of facilities have
established that each facility is almost
unique, because of variations in the
population served, types of emergencies
seen, volume of case load, physical layout
of the facility, proximity (or not) of
supporting services, and other factors.
The challenge is to understand when
various innovations can be applied, in what
combinations, with what success.

The preliminary work has also
established that although there is
literature on emergency services modeling,
it is sparse and (1) most successful
innovations were experiments introduced
by creative operations managers, and (2)
the data base on service times and
characteristics is woefully lacking.
Moreover, the typical facility manager is
overwhelmed by the possibility that data
needed for future planning must be very
detailed, and that its collection is likely to
be intrusive on the provision of health care.



2. LITERATURE

As a result of the analysis of the
existing literature and of interviews conducted
at ten facilities in the N.Y. Metropolitan Area,
several issues have surfaced that illustrate the
fundamental findings of both the literature
search and of the supplemental visits:

Item 1: The purpose of the emergency
room is being refined in the 1990's and
is fundamentally different from the
1950's. However, the recognition level
of this evolution varies from facility to
facility. Even in the literature,
assessments sometimes reflect the
older view of the mission of the

emergency facility;

ltem 2: The need to disaggregate the
client population seems to be of
growing importance in assessing the
demand for resources. Specifically,
certain segments of the population (the
young, the old, etc.) require different
mixes of services, have different
services durations and sometimes need
specialty equipment sizes or designs;

ftem 3: An understanding of the
distribution of customer illnesses
identified by the population segment
affords knowledge of resources needed
for a given time of day, week, and
season. Such information will serve as
an efficient base for the analytic work of
this dissertation which addresses the
demand put upon the resources of the
Emergency Room/Department both in
terms of averages and in terms of a
probabilistic model.

A matrix for patient illness categories
and categories of resources was created
through review of references, including those
by Jenkens, Loscalzo [2], Gillies, et al [3] and
Eliastam et al [4] and through discussions
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with a resource group of local experts and
practitioners. The compilation of client
complaints with their clusters of illnesses
and array of resources was based on the
authoritative medical text of Eliastam et al
[4] along with the lengthy discussions held
with the panel of experts. Service
distributions were estimated in consultation
with experts at several facilities visited.

The two dimensional matrix of
patient iliness and resource categories
provides a tool with which to estimate
frequency and level of demand for
resources and to assist at a later date in
the modeling of a 3-ply matrix of
population segment, customer illness
category, and resources, as shown in
Figure 1.

Population
Segment
Bt
Resources
Customer Iliness
Category
FIGURE 1

3. THE BASIC PROBABILISTIC MODEL OF
SERVICE NEED

The basic model does not focus on
the efficiency with which the demand is
serviced, such as a queueing analysis or
simulation might. Rather, it focuses on the
"demand for service", its variability, and



means of alleviating that variability. Some
supplemental queueing modeling is done to
address the efficiency with which the demand
is processed, but this is secondary to the
prime purpose: providing an understanding of
the conditions and parameter ranges under
which some strategies work and others do
not.

Consider that there are N
customer/patient demand categories (i =
1.2.....,N) and M services (j = 1,2,.....,.M). The
customer/patient categories might range from
cuts to respiratory distress to trauma cases.
The resources might range from triage to x-
ray to endoscopes. Not all services are
necessarily invoked for a given customer
category.

a) N Customer Categories and M
Services, Poisson Demand The number of
customers Y, which arrive in a given demand
category "' is a random variable, with Pr(Y,=y)
= pi(y). The number of people showing up to
be treated in a given time period can often be
modeled as following a Poisson distribution
with reasonable accuracy. Each Poisson
distribution has mean A. The mean may vary
over time, but we will consider it fixed for the
time period of the analysis.

For a given category "i", the patient is
provided a set of resources (j=1,2,... M), the
duration of each of which is a random
variable. The mean, variance, and distribution
of the duration differs with both "i* and 'j". The
probability density distribution of the j"
resource for the i customer group is denoted
fy(t) in this work. The corresponding random
variable is denoted T, in what follows.

Let ST, denote the "time need for the
resource" for all Category "i* who arrive on the
shift (ie. the analysis period) needing
resource 'i". Because both the number of
arrivals and the durations are random, it is
clear that the ST, are also random variables.

If there were exactly "y" customers of
the i" type, the demand for resource 'j* would
have a distribution gy(t|y) which is simply the
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convolution of fi(t) with itself "y" times. This
is so because the random variable ST, =
™Y + T4 + — + T, where the 'n"
denotes individual customers, from n=1 to
n=y (i.e. individual samples from the fi(t)
distribution).

Because g(tly) is the result of a
convolution of the same distribution with
itself several times, the Central Limit
Theorem can be invoked and we can say
that g;(tly) is normal with mean yy, and
variance yo?. This is only valid for larger
values of "y", the number of customers.
However, as long as the fi(t) are relatively
smooth, the normality of the g(t|y) can be
used in practice, even for small "y".

For those cases in which the 'y" is
too small and the f;(t) too sharply defined,
the next step will minimize the effect. The
net result is that the exact form of the f,(t)
distribution is rather unimportant, and they
can be characterized adequately by their
mean and variance.

The distribution of g,(t) is another
matter, however. It is not simply the sum
of several random variables. Rather, it
takes on several different shapes,
depending upon the number of customers
‘y". It is the composite of these shapes,
weighted by their relative probabilities; let
PLY. = y) = p(y). efore,

gi(t) = Z py) giltly)
where the summation is over "y". Further,
the summation is for y = 0, so that there is
a concentration of probability at y = 0. The
g;(t) is the simple addition of the weighted
components (multiply each gi(tly) by its
corresponding p(y) value and then add).

Depending upon the relative values
of the means p,, variances o%, and the
demand distributions, the resultant ST,
distributions can be rather smooth (Figure
2a), show some irregularity (Figure 2b), or
have pronounced irregularities (Figure 2c).
These cases are all shown for Poisson
demand, with various 4, and p, = 6
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DIFFERENT ST, DISTRIBUTIONS,
DEPENDENT UPON DEMAND FOR VARIOUS
A, WITH 13,=8 AND o,=1.6 "

minutes, o, = 1.6 minutes.

After some reflection, it is clear that
the irregular distributions occur when the
component distributions do not overlap.

Note that the tail is relatively smooth
even in Figure 2c even though the
principal components are not, because the
oy are larger compared to the step; for
y=10 and o; = 0.7 minutes, the oy = 2.2
minutes and the even the "2¢" spread is =
4.4 minutes about the center of yp; =
10(6) = 60 minutes for this value of "y",
thereby overlapping the y=9 and y=11
distributions (with the p(y) providing
further tapering).

b) Convolution to Generate the
Resource Need Distributions TT, The ST,
distributions are not the total measure of
demand for a particular resource, but
simply components of that demand.
Define TT, as the total demand for a
resource '§", and note

where the summation is over ',
various customer categories.

Let h(t) be the probability density
function associated with TT,. It is the result
of a convolution of the g,(t), for each of the
N 'i* terms. The mean and variance of TT,
is simply computed in terms of the ST,
means and variances, assuming
independence.

The convolution of the ST, does not
result in a simple invocation of the Central
Limit Theorem in this case, however. The
ST, distributions are each different from the
others, and it is not at all a case of adding
several identical distributions. The TT, is
not necessarily normal, although it is
frequently smooth and appears to be
normal. The smoothness can occur
because the summation (i.e. the
convolution) has this effect.

Although the TT, distribution is
frequently smooth, it is also true that it
often has a tail, due to the long tail on one
or more of the component ST,

the



distributions. At the same time, the TT, and
the comparable normal often match in the
upper tail, even if they do not for lower values.
The match in the upper tail has an interesting
implication: decisions made based upon the
95th percentile point would not be far wrong
if the normal distribution were used.

4. SUPPORTING COMPUTATIONAL TOOLS

In order to explore the implications of
the above formulation, and to investigate
ranges of parameters, a set of programs were
written and interfaced with both a spreadsheet
and a graphics package. Much of the same
analysis could be done in spreadsheets,
although it is not as convenient to
accommodate an arbitrary fy(t) distribution. A
spreadsheet implementation leading to the
g,(t) was done for Poisson customer arrivals
and normal fi(t); it could be easily adapted to
non-Poisson demands, and adapted with
more difficulty to other fi(t). This spreadsheet
was used for extensive analysis of cases to
gain insights.

Some additional spreadsheets were
prepared for comparisons of two different
parameter set analyses. Reference [1]
contains the spreadsheet for a full
implementation of the sixteen client categories
and twenty-five resources cited.

5. SUPPORTING ANALYTIC WORK: pry, or?

Exercising the programs reinforced the
early perception that there are too many
parameters for efficient insights, whether by
computation or by simulation. The parameter
sets to consider include:

The number of customer categories, N;

The number of resources, M;

The demand rates, i

The mean service duration times, p;;

The service duration time standard
deviations, o

This does not even address the questions of
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the work flow and the queueing as patients
are actually processed, which is not within
the scope of this paper.

Rather than design a "complete
block" simulation experiment over these
parameters, and then search for insights,
it was decided to pursue additional analytic
development. The insights gained into the
shapes of gy(t|y), g(t), and h/(t) were used
to focus on the expressions for mean and
standard deviation, rather than distribution
shape.

Reference [1] contains the
derivations for the mean and variance of
the STy and the TT;. The relation for py is:

M

This states that the various results should
be added up in order to determine the
total average demand for service.

The variance is:

om = EI {0% Bouti +8% 0%} (2

The simplicity of these relations provides
us with a powerful tool, which will actually
drive much of the analysis.

In many cases, it is the second
terms which dominate.  The overall
variance is caused by the product of the
uncertainty in the demand (o¢,) and
mean service time (u;). This is where
attention must be focused. Of course, the
overall analysis is complicated by the fact
that several such terms are added to
obtain the variance of TT,

Equations 1 and 2 are used in the
spreadsheet "COMPARE".

a) Special Case: Poisson Demand
The above derivations were done for an
arbitrary demand distribution.  Further,
they did not make use of any assumption
on the normality of the fi(t); these
distributions were also of arbitrary form.

If the arrival demands can be

Bm = E| By Housti



characterized by Poisson distributions, some
special forms of Equations 1 and 2 result:

. ()
an
°2TT] = 2. A {“au +51-25} (4)

This shows that the f,(t) contribute primarily
through their means, not their variances
(unless there is exceptional variability in the
service durations, compared to the means).

b) Insights From the Analytic
Formulation Equation 4 for the Poisson
arrivals may also be rewritten as

m o= 2 AR {1+C%} (5

where CV, = o/u; is the coefficient of
variation. It is reasonable to expect CV; < 0.20
in most cases, so that the term in the brackets
is generally less than 1.04. This emphasizes
the importance of the , p? terms, and the
reality that improvements to the o, have little
benefit in most cases: they do not contribute
to the mean p; at all, and are generally
negligible in o,

The coefficient of variation for the TT,
can be written as

2
Vi of

A )2

Uzm = )4.| {Uzu +|.12|}}

CVpp= (€)

where CV,, is the coefficient of variation of the
fy(t) distribution for i=1 and j=1, and where o?
is the variance of the customer demand.

Clearly, if o%=0, then the two
coefficients of variation are directly
proportional, and CV is inversely proportional
to the square root of the number of
customers.

Just as clearly, whenever o? is
significant compared to the mean number of
customers, the second term in Equation 8
quickly dominates and drives toward an
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asymptote determined by the ¢2,/A ratio.

What emerges is an illustration of
the relative importance of different terms,
under different conditions. Of course, if
the effects of two customer categories with
different ratios were considered
concurrently, additional complexities are
introduced.

It is also important to recognize that
a stable CV ratio is not sufficient.
Consider the scheduling of people or
machines to meet the demand: both
people and demand come in integer
quantities. Even if CV is stable, the o
increases in proportion to the number of
customers.

As the variance of the demand
increases, the resource duration needed
also increases. Clearly, as the demand
becomes more uncertain, it might be
necessary to bring on more staff or more

equipment, simply to deal with the
uncertainty.
At the same time, increasing

demand generally decreases the relative
variability. Nonetheless, the absolute
variability grows. This is a situation in
which the number of staff or equipment
required becomes more uncertain on a
fixed scale, despite being a smaller
percentage problem.

Can an emergency department
cope with more uncertainty because it is a
smaller percentage of the business? The
best answer is, it depends. Certainly it
might be a surprise for some
administrators to find that an uncertainty of
+1 person becomes an uncertainty of +2
persons when the business goes up by a
factor of four.

6. CASE STUDIES
Three case studies were considered
in the complete work [1]:

1) the variance of TT, is studied,



specifically in terms of the contributing
factors;

2) the effects on the needed resources,
when the population using the facility
shifts, or when facilites in different
areas (with different clientele) are
considered:;

3) the strategy of referring certain
overflows to other facilities, thereby
making the demand more regular at
least one of the facilities, and the effect
on both (or all) of the participating
facilities.

From Equation 4, the point has already been
made that ¢ is generally negligible compared
to p%. Rather than it mattering that the o/p,
ratio is 0.20, substitution allows Equation 4 to
be re-written as

Simply put, the o, simply do not contribute
and their specific values are virtually irrelevant
in this case.

Notice that i the p;, were all
comparable, then that term could be taken out
of the summation in Equation 9, and made a

ient. The principal term would then be

A, and the oy, would be driven by this term.

What are some of the insights from
these case studies?

From the first case study, three points:
(1) the o, simply do not contribute in the
typical situation encountered, so that undue
attention to decreasing them simply does not
make sense; (2) the randomness of the
Poisson demand shows up in the CVyy, with
full force, and any effort in mitigating the
randomness of the input demand has
significant benefit; (3) any resource which has
one or more p; which "stand out from the
crowd" contributes directly to the CVy; and
must be reviewed --- particularly if it is
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multiplied by a significant A,

The real issue in this last point is
that any p?A, term which is a significant
part of the variance term o? or dominates
it must be addressed. On the other hand,
terms which are so small that they "hide"
amongst much larger terms need not be
addressed at all, unless in concert with
sets of such terms.

In the second case study, for minor
shifts from a "typical' population to a
heavier representation of "older" people
with greater frequencies in some
categories, there were increases in 20 of
the 25 resource categories, representing
an average percent increase of 14.3%
within those experiencing an increase, and
a total of 8.9% increase in needed service-
hours for the same total number of
patients. Of course, in addition to the
shifts themselves, in most organizations a
decrease in need within four categories
(one had no change) does not result in an
immediate shift in support of the 20
resources experiencing growth. This
institutional reality exacerbates any
problems which occur due to a different or
changing clientele profile.

Needless to say, as the nature of
the resource need changes, the facility
must evolve. A number of redesigns are
simply attempts to catch up, in one step,
with past clientele changing patterns. The
COMPARE sheet is one tool which can aid
emergency department operators and
designers articulate these changes,
recognize them, and adjust.

The results of the third case study
are more complex to present, and are to
be reported in the literature separately.

7. CONCLUDING REMARKS

In the course of this work, it became
clear that there is no real consensus on
the client categories, nor on the estimates
of the resource duration estimates, nor



even on the major groups into which the
population should be disaggregated. The
very existence of a framework (i.e. the
"COMPARE" spreadsheet) with labels and
numbers will surely (a) make the assumptions
clear and open to easy refinement, and (b)
generate the discussion leading to such
refinement.

The author is also satisfied with the
insights gained by using the analytic
formulation as a tool. Simulation, which can
be a valuable tool, is sometimes used as a
brute force approach. Innumerable runs
would have been needed to "reveal' the
relationships and sensitivities reported in this
paper.

These l|essons become more
complicated to apply, and the effects more
subtle, when several customer categories with
significantly different resource needs are
present at the same time. Nonetheless, they
are valid, as could be seen in the case studies
in [1].

One of the products of this work is a
conceptual framework, namely the linkage
from the disaggregated demand and the
resource descriptors fi(t) to the total needs for
resources. This was the product of many
discussions and reviews. It became clear that
the framework itself --- implemented in the
"COMPARE" spreadsheet --- was an effective
vehicle for focusing the discussion.

Rather than the conversations diverging
based upon different perspectives, people
with disparate backgrounds found common
ground: Are the client and resource lists
detailed enough? Are important cases
covered? Are the p; and o, reasonable? Are
the results relevant?

The author found that discussions
focusing around the set of resources needed,
particularly in the face of a changing customer
base, freed people to address these questions
and start volunteering alternate scenarios
(What if this happened? What about that?).
Clearly, the spreadsheet became an "enabling

technology" for people to focus on
quantitative exercises they had previously
found cumbersome or did not fully
conceptualize.

Therefore, it is planned that in later
work the spreadsheet will be used as the
tool by which one or more teams address
the underlying assumptions (which are
explicit, even obvious) in workshops
and/or focus groups.

It also became clear that the
spreadsheet can be used to train or "bring
up to speed" people who are uninitiated in
thinking about trends, future planning, and
redesign. This can be done in the format
of a one-day training course, with worked
problems.
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